Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Erstmals gemessen: Quantenfeldtheorie im Quanten-Simulator

18.05.2017

Eine neue Art der Vermessung von Vielteilchen-Quantensystemen präsentiert die TU Wien in Kooperation mit der Universität Heidelberg nun im Fachjournal „Nature“.

In „Quanten-Simulatoren“ kann man bislang unbeantwortbaren Fragen nachgehen.
Was geschah am Beginn des Universums? Wie kann man die Struktur von Quantenmaterialien verstehen? Wie funktioniert der Higgs-Mechanismus?


Atom-Chip an der TU Wien

TU Wien

Wenn man solche fundamentalen Fragen beantworten will, muss man sich mit Quantenfeldtheorien beschäftigen. Sie betrachten Teilchen nicht getrennt voneinander, sondern als ein großes Feld, das unser ganzes Universum erfüllt.

Manchmal sind solche Theorien aber nur sehr schwer experimentell zu überprüfen. Am Vienna Center for Quantum Science and Technology (VCQ) an der TU Wien konnte nun gezeigt werden, wie man Quantenfeldtheorien in Experimenten gezielt testen kann.

Dazu stellten die Forscher ein Quantensystem aus tausenden ultrakalten Atomen her, die festgehalten in einer magnetischen Falle auf einem AtomChip, zu einem „Quanten-Simulator“ werden. Dieser kann Auskunft über ganz andere physikalische Systeme liefern und so dabei helfen, grundlegende Fragen der Physik zu beantworten.

Komplexe Quantensysteme, die sich nicht zerlegen lassen

„Ultrakalte Atome bieten nun einen natürlichen Zugang, grundlegende physikalische Quanten-Prozesse im Labor nachzubauen und zu untersuchen“, erklärt Prof. Jörg Schmiedmayer vom Atominstitut der TU Wien. Charakteristisch für ein solches System aus mehreren tausend Bestandteilen ist, dass man seine Einzelteile nicht getrennt voneinander untersuchen kann.

Bei klassischen Systemen, wie wir sie aus unserem Alltag kennen, ist das ganz anders: Die Bahnen der Kugeln auf einem Billardtisch kann man getrennt voneinander analysieren – nur wenn die Kugeln aneinanderstoßen, wirken sie aufeinander ein.

„In einem hochkorrelierten Quantensystem aus mehreren tausenden Teilchen wie dem unseren ist die Komplexität so hoch, dass es mathematisch nicht möglich ist, die Bestandteile getrennt voneinander sinnvoll zu beschreiben“, erklärt Thomas Schweigler, der Erstautor der Publikation. „Stattdessen beschreibt man das System mithilfe kollektiver Prozesse an denen eine Vielzahl von Teilchen beteiligt ist, ähnlich wie Wellen in Flüssigkeiten, die ja auch aus unzähligen Molekülen bestehen.“ Diese kollektiven Prozesse wurden nun mithilfe neuer Methoden aufs Genaueste untersucht.

Höhere Korrelationen

Wenn man mit hoher Präzision misst, an welchen Positionen sich die einzelnen Atome befinden, stellt man fest: Nicht an jedem Punkt ist die Wahrscheinlichkeit, ein Atom zu finden, gleich groß. Und diese Wahrscheinlichkeiten an unterschiedlichen Orten stehen miteinander in Verbindung. „Wenn ich in einem gewöhnlichen Gas an zwei bestimmten Punkten jeweils ein Teilchen messe, ändert das nichts an der Wahrscheinlichkeit dafür, an einem anderen Punkt ein drittes Teilchen zu messen“, sagt Jörg Schmiedmayer. „Doch in der Quantenphysik hängen Messungen an unterschiedlichen Orten auf ganz subtile Weise zusammen. Damit geben sie Auskunft über die grundlegenden Naturgesetze, die das Verhalten der atomaren Wolke auf dem Level der Quanten bestimmen“

„Die sogenannten Korrelationsfunktionen, mit denen man diese Zusammenhänge mathematisch beschreibt, gelten in der theoretischen Physik als äußerst wichtiges Instrument zur Charakterisierung von Quantensystemen“, betont Prof. Jürgen Berges vom Institut für Theoretische Physik der Universität Heidelberg. Doch während sie in der theoretischen Forschung schon bisher stets eine entscheidende Rolle spielten, waren sie im Experiment bisher kaum zugänglich. Mit Hilfe der an der TU Wien entwickelten Methoden ändert sich das nun. „Wir können uns Korrelationen unterschiedlicher Ordnung ansehen – bis hin zur zehnten Ordnung. Dabei werden die Zusammenhänge zwischen den Ergebnissen von gleichzeitigen Messungen an zehn verschiedenen Punkten im Raum bestimmt“, erklärt Schmiedmayer. „Für die Beschreibung des Quantensystems ist es ganz wichtig, ob die höheren Korrelationen durch die Korrelationen niedriger Ordnung dargestellt werden können – dann kann man sie irgendwann vernachlässigen, oder ob sie neue Information enthalten, und man das System vielleicht mit klassischen Computern niemals vollständig beschreiben kann.“

Quanten-Simulatoren

Anhand solcher hochkorrelierter Systeme wie der Atomwolke in der magnetischen Falle kann man nun verschiedene Theorien testen und die Natur der Quantenkorrelationen besser verstehen. Diese Quantenkorrelationen spielen für scheinbar ganz unterschiedliche physikalische Fragen eine entscheidende Rolle – etwa für die merkwürdigen Eigenschaften des jungen Universums direkt nach dem Urknall, aber auch für spezielle neue Materialien wie etwa die sogenannten topologischen Isolatoren.

Über verschiedenste physikalische Systeme kann man wichtige Erkenntnisse gewinnen, indem man analoge Bedingungen mit Hilfe der Atomwolken nachstellt und sie dann untersucht. Das ist die Grundidee eines „Quanten-Simulators“: Ähnlich wie eine Computer-Simulation Ergebnisse liefert, aus denen man etwas über die reale Welt lernt, können Messungen an Quanten-Simulatoren Ergebnisse über ein ganz anderes Quantensystem liefern, das nicht direkt im Labor untersucht werden kann.

Die Untersuchung von gemeinsamen physikalischen Grundlagen sehr verschiedener Systems ist ein zentrales Ziel des Sonderforschungsbereichs „Isolierte Quantensysteme und Universalität unter extremen Bedingungen (SFB 1225 ISOQUANT)“ der kürzlich an der Universität Heidelberg und der TU Wien eingerichtet wurde.

Rückfragehinweis:
Prof. Jörg Schmiedmayer
Atominstitut
Technische Universität Wien
Stadionallee 2, 1020 Wien
T: +43-1-58801-141801
M: +43-664-605883888
hannes-joerg.schmiedmayer@tuwien.ac.at

Weitere Informationen:

https://www.tuwien.ac.at/dle/pr/aktuelles/downloads/2017/quanten_simulator/ Weiter Bilder

Dr. Florian Aigner | Technische Universität Wien

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Rätselhaftes IceCube-Ereignis könnte von Tau-Neutrino stammen
19.06.2018 | Johannes Gutenberg-Universität Mainz

nachricht Ein neues Experiment zum Verständnis der Dunklen Materie
14.06.2018 | Max-Planck-Institut für Radioastronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Überdosis Calcium

Nanokristalle beeinflussen die Differenzierung von Stammzellen während der Knochenbildung

Wissenschaftlerinnen und Wissenschaftler der Universitäten Freiburg und Basel haben einen Hauptschalter für die Regeneration von Knochengewebe identifiziert....

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 in Shanghai

Die AchemAsia geht in ihr viertes Jahrzehnt und bricht auf zu neuen Ufern: Das International Expo and Innovation Forum for Sustainable Chemical Production findet vom 21. bis 23. Mai 2019 in Shanghai, China statt. Gleichzeitig erhält die Veranstaltung ein aktuelles Profil: Die elfte Ausgabe fokussiert auf Themen, die für Chinas Prozessindustrie besonders relevant sind, und legt den Schwerpunkt auf Nachhaltigkeit und Innovation.

1989 wurde die AchemAsia als Spin-Off der ACHEMA ins Leben gerufen, um die Bedürfnisse der sich damals noch entwickelnden Iindustrie in China zu erfüllen. Seit...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: Li-Fi erstmals für das industrielle Internet der Dinge getestet

Mit einer Abschlusspräsentation im BMW Werk München wurde das BMBF-geförderte Projekt OWICELLS erfolgreich abgeschlossen. Dabei wurde eine Li-Fi Kommunikation zu einem mobilen Roboter in einer 5x5m² Fertigungszelle demonstriert, der produktionsübliche Vorgänge durchführt (Teile schweißen, umlegen und prüfen). Die robuste, optische Drahtlosübertragung beruht auf räumlicher Diversität, d.h. Daten werden von mehreren LEDs und mehreren Photodioden gleichzeitig gesendet und empfangen. Das System kann Daten mit mehr als 100 Mbit/s und fünf Millisekunden Latenz übertragen.

Moderne Produktionstechniken in der Automobilindustrie müssen flexibler werden, um sich an individuelle Kundenwünsche anpassen zu können. Forscher untersuchen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Hengstberger-Symposium zur Sternentstehung

19.06.2018 | Veranstaltungen

LymphomKompetenz KOMPAKT: Neues vom EHA2018

19.06.2018 | Veranstaltungen

Simulierter Eingriff am virtuellen Herzen

18.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Rätselhaftes IceCube-Ereignis könnte von Tau-Neutrino stammen

19.06.2018 | Physik Astronomie

Automatisierung und Produktionstechnik – Wandlungsfähig – Präzise – Digital

19.06.2018 | Messenachrichten

Überdosis Calcium

19.06.2018 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics