Erstmals freie Nanoteilchen mit hochintensiver Laserquelle im Laborexperiment abgebildet

Pillenförmige Heliumnanotröpfchen können durch gebogene Strukturen im Streubild nachgewiesen werden. © MBI

In einem gemeinsamen Forschungsprojekt des Max-Born-Instituts für Nichtlineare Optik und Kurzzeitspektroskopie (MBI), der TU Berlin und der Universität Rostock ist es erstmals gelungen, freie Nanoteilchen mit einer hochintensiven Laserquelle in einem Laborexperiment abzubilden.

Die detailreiche Darstellung dieser extrem kleinen Strukturen mit Hilfe einzelner Beugungsbilder war bislang nur an Großforschungseinrichtungen, an sogenannten Freie-Elektronen-Lasern, möglich. Die wegweisenden Ergebnisse ermöglichen die hocheffiziente Charakterisierung der chemischen, optischen und strukturellen Eigenschaften von einzelnen Nanopartikeln und sind jetzt in „Nature Communications“ erschienen.

Erstautorin der Publikation ist die Nachwuchswissenschaftlerin Dr. Daniela Rupp, die das Projekt an der TU Berlin durchführte und jetzt am MBI eine Nachwuchsforschungsgruppe aufbaut.

In ihrem Laborexperiment hat das Forscherteam Heliumgas eingesetzt, das – auf niedrigste Temperaturen heruntergekühlt – in einen supraflüssigen Zustand übergeht und beim Zerstäuben klitzekleine Nanotröpfchen bildet. „Diese winzigen Tröpfchen haben wir mit ultrakurzen Röntgenblitzen durchleuchtet und das gestreute Laserlicht als Schnappschuss auf einem Flächendetektor aufgezeichnet“, erklärt Dr. Daniela Rupp.

„Zum Erfolg der Experimente haben die hochintensiven Röntgenblitze aus der Labor-Laserquelle am MBI beigetragen, die mit einer einzigen Aufnahme bereits detailreiche Streumuster liefern“, erläutert Dr. Arnaud Rouzée vom MBI.

„Durch die Aufnahme im sogenannten Weitwinkel-Modus haben wir bislang unbekannte Formen der supraflüssigen Tröpfchen identifiziert“, ergänzt Prof. Thomas Fennel vom MBI und der Universität Rostock. Die Ergebnisse des Forscherteams eröffnen völlig neue Möglichkeiten für die Analyse der Struktur und optischen Eigenschaften kleiner Teilchen. Sie zeigen, dass dank modernster Laserlichtquellen nicht mehr nur ausschließlich an Großforschungseinrichtungen beeindruckende Abbildungen von kleinster Materie möglich sind.

Die Physikerin Dr. Daniela Rupp war bis Sommer 2017 als Wissenschaftlerin am Institut für Optik und Atomare Physik der Technischen Universität Berlin tätig. Jetzt baut sie am MBI eine Nachwuchsgruppe auf (Leibniz-Junior Research Group), in der sie ihre Forschung zu Einzelpartikel-Abbildung mit kurzen und intensiven extrem-ultravioletten Lichtpulsen fortsetzt.

Sie wurde bereits mehrfach ausgezeichnet – mit dem Dissertationspreis der Sektion AMOP der Deutschen Physikalischen Gesellschaft, dem Carl-Ramsauer-Preis der Physikalischen Gesellschaft zu Berlin sowie dem Physik-Studienpreis der Wilhelm und Else Heraeus-Stiftung.

Publikation:
Coherent diffractive imaging of single helium nanodroplets with a high harmonic generation source
Daniela Rupp, Nils Monserud, Bruno Langbehn, Mario Sauppe, Julian Zimmermann, Yevheniy Ovcharenko, Thomas Möller, Fabio Frassetto, Luca Poletto, Andrea Trabattoni, Francesca Calegari, Mauro Nisoli, Katharina Sander, Christian Peltz, Marc J. J. Vrakking, Thomas Fennel & Arnaud Rouzée. Nature Communications 8 (2017)
https://www.nature.com/articles/s41467-017-00287-z

Fotomaterial zum Download

www.tu-berlin.de/?188814

Weitere Informationen erteilt Ihnen gern:
Dr. Daniela Rupp
Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie (MBI)
E-Mail: daniela.rupp@mbi-berlin.de
Tel.: 030 6392-1280

https://www.nature.com/articles/s41467-017-00287-z
http://www.tu-berlin.de/?188814

Media Contact

Stefanie Terp Technische Universität Berlin

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer