Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

23.01.2017

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft beschleunigt. Dieses Prinzip gilt für Steine, Federn und Atome gleichermaßen. Unter den Bedingungen der Schwerelosigkeit kann besonders lange und damit präzise gemessen werden, ob verschieden schwere Atome tatsächlich „gleich schnell im Schwerefeld der Erde fallen“ oder ob wir unser Bild von dem, was die Welt im Innersten zusammenhält, korrigieren müssen.


MOPA-Lasermodul für MAIUS

Hybrid integriertes Master-Oscillator-Power-Amplifier (MOPA)-Lasermodul aus dem Ferdinand-Braun-Institut für die Rubidium-Präzisionsspektroskopie im Weltraum – drei dieser MOPA-Module sowie zwei Redundanzmodule sind im Lasersystem integriert.

(©FBH/schurian.com)


MAIUS-Lasersystem

MAIUS-Lasersystem, mit dem im Weltraum erstmalig ein Bose-Einstein-Kondensat erzeugt wurde. Es ist in etwa so groß wie ein Schuhkarton und 27 kg schwer. Die hybrid-integrierten Lasermodule des FBH befinden sich unten im System, auf der Oberseite wird das Laserlicht für die Weiterleitung an das Hauptexperiment aufbereitet.

(© Humboldt-Universität zu Berlin)

Einem nationalen Konsortium, zu dem auch das Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik (FBH) sowie die Humboldt-Universität zu Berlin (HU) gehören, ist nun im Rahmen der MAIUS-Mission ein historischer Schritt auf dem Weg zu einem Test des Äquivalenzprinzips im Mikrokosmos der Quantenobjekte gelungen.

Am 23. Januar 2017 wurde erstmalig im Weltraum eine Wolke nano-Kelvin kalter Rubidium-Atome erzeugt. Diese wurde mit Laserlicht und Radiofrequenzen so abgekühlt, dass die einzelnen Atome gleichsam ein einziges Quantenobjekt formen, ein Bose-Einstein-Kondensat. Gut 20 Jahre nach den bahnbrechenden Arbeiten der Nobelpreisträger Cornell, Ketterle und Wieman im Feld der ultrakalten Atome deutet die vorläufige Auswertung der wissenschaftlichen Daten darauf hin, dass solche Experimente auch unter den rauen Bedingungen im Weltraum durchgeführt werden können – 1995 waren wohnzimmergroße Apparaturen in spezieller Laborumgebung dazu notwendig.

Der quantenoptische Sensor von Heute ist nur so groß wie ein Gefrierschrank und bleibt trotz der enormen mechanischen und thermischen Belastungen eines Raketenstarts einsatzfähig. Mit dieser Mission wurde die Grundlage für den zukünftigen Einsatz von Quantensensoren im Weltraum gelegt.

Die Forscher erhoffen sich davon Hinweise zur Bewältigung einer der womöglich größten Herausforderungen der modernen Physik: die Vereinigung der Gravitation mit den anderen drei grundlegenden Wechselwirkungen (starke und schwache Kraft, Elektromagnetismus) in einer einheitlichen Theorie. Zugleich sind diese Experimente Innovationstreiber für ein breites Spektrum an Anwendungen, von der GPS-freien Navigation bis hin zur weltraumgestützten Geodäsie, der Vermessung der Erdoberfläche.

Umfassendes Know-how bei Lasermodulen für Weltraumanforderungen

Das FBH hat für diese Mission hybrid mikrointegrierte, weltraumtaugliche Lasermodule entwickelt, die auf Halbleitern basieren. Diese hat die HU zusammen mit anderen optischen und spektroskopischen Modulen weiterer Partner zu einem funktionalen Gesamtlasersystem zusammengeführt und qualifiziert. Die Mission wurde von einem nationalen Konsortium unter Leitung der Leibniz Universität Hannover koordiniert.

Sie zeigt nicht nur, dass quantenoptische Experimente mit ultrakalten Atomen auch im Weltraum durchgeführt werden können, sie gibt dem FBH und der HU auch die Möglichkeit, ihre Lasersystemtechnologie unter realen Einsatzbedingungen zu testen und die Ergebnisse zur Vorbereitung weiterer, bereits geplanter Missionen zu nutzen. Für beide Einrichtungen ist dies nicht der erste Einsatz ihrer Lasertechnologie im Weltraum. Bereits im April 2015 und Januar 2016 konnten Technologiebausteine der aktuellen Mission an Bord zweier Höhenforschungsraketen in den Experimenten FOKUS und KALEXUS erfolgreich getestet werden

MAIUS: Materiewelleninterferometrie unter Schwerelosigkeit

Die vom Deutschen Luft- und Raumfahrtzentrum (DLR) mit Mitteln des Bundesministeriums für Wirtschaft und Energie geförderte Mission MAIUS testet alle Schlüsseltechnologien eines weltraumgestützten Quantensensors auf einer Höhenforschungsrakete: Vakuumkammer, Lasersystem, Elektronik und Software. Damit ist MAIUS ein historischer Meilenstein für zukünftige Missionen im Weltraum, die das volle Potenzial der Quantentechnologie ausnutzen. Weltweit zum ersten Mal wurde ein Bose-Einstein-Kondensat aus Rubidium-Atomen auf einer Höhenforschungsrakete erzeugt und interferometrisch untersucht. Dieser Materiezustand ermöglicht hochgenaue Messungen von Beschleunigungen und Rotationen. Hierbei werden Pulse aus Laserlicht als Referenz benutzt, um sehr präzise die Position der Atomwolke zu unterschiedlichen Zeitpunkten zu vermessen.

Unter der Leitung der Arbeitsgruppe Optische Metrologie der HU wurde ein kompaktes und stabiles Diodenlasersystem für die Laserkühlung und Atominterferometrie mit ultra-kalten Rubidium-Atomen auf einer Höhenforschungsrakete entwickelt. Das Lasersystem für den Betrieb des Hauptexperimentes auf MAIUS setzt sich aus vier Diodenlasermodulen zusammen, die das FBH als hybrid-integrierte Lasermodule realisiert hat. Die Master-Laser bestehen jeweils aus einem monolithischen Distributed-Feedback (DFB)-Laser, dessen Frequenz auf die eines optischen Übergangs in Rubidium stabilisiert ist.

Sie erzeugen spektral reine und hochstabile (~ 1 MHz Linienbreite) optische Strahlung geringer Leistung (einige 10 mW) bei 780 Nanometern Wellenlänge. Drei auf diesen Master-Laser referenzierte, hybrid-integrierte Master-Oscillator-Power-Amplifier sind für die Laserkühlung der Atome und für die Interferometrie zuständig. Bei Ihnen wird die Strahlung eines DFB-Lasers ohne Verlust der spektralen Stabilität mit einem Trapezverstärker mit einer Rippenwellenleiter-Eingangssektion bis zu Leistungen jenseits von 1 Watt nachverstärkt.

Um den erfolgreichen Verlauf der Mission zu sichern, wurden zusätzlich zwei Redundanzmodule integriert. Das Laserlicht wird mittels faseroptischer Bauelemente aufbereitet und an die Experimentierkammer weitergeleitet, zum schnellen Schalten des Lichts werden akusto-optische Modulatoren in einem Freistrahlaufbau genutzt.

Zusätzlich wurde für künftige Missionen ein Laser-Technologie-Demonstrator integriert, der zwei vom FBH entwickelte, mikrointegrierte Extended Cavity Diode Laser (ECDL)-Halbleiterlasermodule enthält. Diese Module werden insbesondere für zukünftige Atominterferometrie-Experimente benötigt, die strengere Anforderungen an die spektrale Stabilität der Laser stellen.

Kontakte

Petra Immerz / Dr. Andreas Wicht

Ferdinand-Braun-Institut
Leibniz-Institut für Höchstfrequenztechnik

Gustav-Kirchhoff-Straße 4
12489 Berlin

Tel. +49.30.6392-2626 / -3958
Fax +49.30.6392-2602
E-Mail petra.immerz@fbh-berlin.de ; andreas.wicht@fbh-berlin.de
www.fbh-berlin.de
http://twitter.com/FBH_News

Prof. Achim Peters, PhD / Dr. Markus Krutzik

Humboldt-Universität zu Berlin

AG Optische Metrologie

Tel. +49.30.2093-4905 / -4814

E-Mail    achim.peters@physik.hu-berlin.de ; markus.krutzik@physik.hu-berlin.de

Web     www.physik.hu-berlin.de/en/qom

Über das Joint Lab Laser Metrology

Im Rahmen dieses Joint Labs werden sehr schmalbandige Diodenlaser, unter anderem für die optische Präzisionsspektroskopie im Weltraum entwickelt. Hierbei arbeiten das Ferdinand-Braun-Institut und die Arbeitsgruppe Optische Metrologie der Mathematisch-Naturwissenschaftlichen Fakultät der Humboldt-Universität zu Berlin eng zusammen. Dadurch können die gemeinsamen Interessen und komplementären Expertisen von HU (optische Präzisionsmessungen für fundamentalphysikalische Fragestellungen) und FBH (Halbleiterlaserentwicklung) optimal gebündelt werden.

Petra Immerz / Dr. Andreas Wicht | Ferdinand-Braun-Institut Leibniz-Institut für Höchstfrequenztechnik
Weitere Informationen:
http://www.fbh-berlin.de/de/presse/pressemitteilungen/detail/erstmalig-quantenoptischer-sensor-im-weltraum-getestet-mit-einem-lasersystem-aus-berlin

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Biophysik - Blitzlicht aus der Nanowelt
24.04.2018 | Ludwig-Maximilians-Universität München

nachricht Moleküle brillant beleuchtet
23.04.2018 | Max-Planck-Institut für Quantenoptik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: Innovatives 3D-Druckverfahren für die Raumfahrt

Auf der Hannover Messe 2018 präsentiert die Bundesanstalt für Materialforschung und -prüfung (BAM), wie Astronauten in Zukunft Werkzeug oder Ersatzteile per 3D-Druck in der Schwerelosigkeit selbst herstellen können. So können Gewicht und damit auch Transportkosten für Weltraummissionen deutlich reduziert werden. Besucherinnen und Besucher können das innovative additive Fertigungsverfahren auf der Messe live erleben.

Pulverbasierte additive Fertigung unter Schwerelosigkeit heißt das Projekt, bei dem ein Bauteil durch Aufbringen von Pulverschichten und selektivem...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: IWS-Ingenieure formen moderne Alu-Bauteile für zukünftige Flugzeuge

Mit Unterdruck zum Leichtbau-Flugzeug

Ingenieure des Fraunhofer-Instituts für Werkstoff- und Strahltechnik (IWS) in Dresden haben in Kooperation mit Industriepartnern ein innovatives Verfahren...

Im Focus: Moleküle brillant beleuchtet

Physiker des Labors für Attosekundenphysik, der Ludwig-Maximilians-Universität und des Max-Planck-Instituts für Quantenoptik haben eine leistungsstarke Lichtquelle entwickelt, die ultrakurze Pulse über einen Großteil des mittleren Infrarot-Wellenlängenbereichs generiert. Die Wissenschaftler versprechen sich von dieser Technologie eine Vielzahl von Anwendungen, unter anderem im Bereich der Krebsfrüherkennung.

Moleküle sind die Grundelemente des Lebens. Auch wir Menschen bestehen aus ihnen. Sie steuern unseren Biorhythmus, zeigen aber auch an, wenn dieser erkrankt...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

infernum-Tag 2018: Digitalisierung und Nachhaltigkeit

24.04.2018 | Veranstaltungen

Fraunhofer eröffnet Community zur Entwicklung von Anwendungen und Technologien für die Industrie 4.0

23.04.2018 | Veranstaltungen

Mars Sample Return – Wann kommen die ersten Gesteinsproben vom Roten Planeten?

23.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Von der Genexpression zur Mikrostruktur des Gehirns

24.04.2018 | Biowissenschaften Chemie

Bestrahlungserfolg bei Hirntumoren lässt sich mit kombinierter PET/MRT vorhersagen

24.04.2018 | Medizintechnik

RWI/ISL-Containerumschlag-Index auf hohem Niveau deutlich rückläufig

24.04.2018 | Wirtschaft Finanzen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics