Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

23.01.2017

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft beschleunigt. Dieses Prinzip gilt für Steine, Federn und Atome gleichermaßen. Unter den Bedingungen der Schwerelosigkeit kann besonders lange und damit präzise gemessen werden, ob verschieden schwere Atome tatsächlich „gleich schnell im Schwerefeld der Erde fallen“ oder ob wir unser Bild von dem, was die Welt im Innersten zusammenhält, korrigieren müssen.


MOPA-Lasermodul für MAIUS

Hybrid integriertes Master-Oscillator-Power-Amplifier (MOPA)-Lasermodul aus dem Ferdinand-Braun-Institut für die Rubidium-Präzisionsspektroskopie im Weltraum – drei dieser MOPA-Module sowie zwei Redundanzmodule sind im Lasersystem integriert.

(©FBH/schurian.com)


MAIUS-Lasersystem

MAIUS-Lasersystem, mit dem im Weltraum erstmalig ein Bose-Einstein-Kondensat erzeugt wurde. Es ist in etwa so groß wie ein Schuhkarton und 27 kg schwer. Die hybrid-integrierten Lasermodule des FBH befinden sich unten im System, auf der Oberseite wird das Laserlicht für die Weiterleitung an das Hauptexperiment aufbereitet.

(© Humboldt-Universität zu Berlin)

Einem nationalen Konsortium, zu dem auch das Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik (FBH) sowie die Humboldt-Universität zu Berlin (HU) gehören, ist nun im Rahmen der MAIUS-Mission ein historischer Schritt auf dem Weg zu einem Test des Äquivalenzprinzips im Mikrokosmos der Quantenobjekte gelungen.

Am 23. Januar 2017 wurde erstmalig im Weltraum eine Wolke nano-Kelvin kalter Rubidium-Atome erzeugt. Diese wurde mit Laserlicht und Radiofrequenzen so abgekühlt, dass die einzelnen Atome gleichsam ein einziges Quantenobjekt formen, ein Bose-Einstein-Kondensat. Gut 20 Jahre nach den bahnbrechenden Arbeiten der Nobelpreisträger Cornell, Ketterle und Wieman im Feld der ultrakalten Atome deutet die vorläufige Auswertung der wissenschaftlichen Daten darauf hin, dass solche Experimente auch unter den rauen Bedingungen im Weltraum durchgeführt werden können – 1995 waren wohnzimmergroße Apparaturen in spezieller Laborumgebung dazu notwendig.

Der quantenoptische Sensor von Heute ist nur so groß wie ein Gefrierschrank und bleibt trotz der enormen mechanischen und thermischen Belastungen eines Raketenstarts einsatzfähig. Mit dieser Mission wurde die Grundlage für den zukünftigen Einsatz von Quantensensoren im Weltraum gelegt.

Die Forscher erhoffen sich davon Hinweise zur Bewältigung einer der womöglich größten Herausforderungen der modernen Physik: die Vereinigung der Gravitation mit den anderen drei grundlegenden Wechselwirkungen (starke und schwache Kraft, Elektromagnetismus) in einer einheitlichen Theorie. Zugleich sind diese Experimente Innovationstreiber für ein breites Spektrum an Anwendungen, von der GPS-freien Navigation bis hin zur weltraumgestützten Geodäsie, der Vermessung der Erdoberfläche.

Umfassendes Know-how bei Lasermodulen für Weltraumanforderungen

Das FBH hat für diese Mission hybrid mikrointegrierte, weltraumtaugliche Lasermodule entwickelt, die auf Halbleitern basieren. Diese hat die HU zusammen mit anderen optischen und spektroskopischen Modulen weiterer Partner zu einem funktionalen Gesamtlasersystem zusammengeführt und qualifiziert. Die Mission wurde von einem nationalen Konsortium unter Leitung der Leibniz Universität Hannover koordiniert.

Sie zeigt nicht nur, dass quantenoptische Experimente mit ultrakalten Atomen auch im Weltraum durchgeführt werden können, sie gibt dem FBH und der HU auch die Möglichkeit, ihre Lasersystemtechnologie unter realen Einsatzbedingungen zu testen und die Ergebnisse zur Vorbereitung weiterer, bereits geplanter Missionen zu nutzen. Für beide Einrichtungen ist dies nicht der erste Einsatz ihrer Lasertechnologie im Weltraum. Bereits im April 2015 und Januar 2016 konnten Technologiebausteine der aktuellen Mission an Bord zweier Höhenforschungsraketen in den Experimenten FOKUS und KALEXUS erfolgreich getestet werden

MAIUS: Materiewelleninterferometrie unter Schwerelosigkeit

Die vom Deutschen Luft- und Raumfahrtzentrum (DLR) mit Mitteln des Bundesministeriums für Wirtschaft und Energie geförderte Mission MAIUS testet alle Schlüsseltechnologien eines weltraumgestützten Quantensensors auf einer Höhenforschungsrakete: Vakuumkammer, Lasersystem, Elektronik und Software. Damit ist MAIUS ein historischer Meilenstein für zukünftige Missionen im Weltraum, die das volle Potenzial der Quantentechnologie ausnutzen. Weltweit zum ersten Mal wurde ein Bose-Einstein-Kondensat aus Rubidium-Atomen auf einer Höhenforschungsrakete erzeugt und interferometrisch untersucht. Dieser Materiezustand ermöglicht hochgenaue Messungen von Beschleunigungen und Rotationen. Hierbei werden Pulse aus Laserlicht als Referenz benutzt, um sehr präzise die Position der Atomwolke zu unterschiedlichen Zeitpunkten zu vermessen.

Unter der Leitung der Arbeitsgruppe Optische Metrologie der HU wurde ein kompaktes und stabiles Diodenlasersystem für die Laserkühlung und Atominterferometrie mit ultra-kalten Rubidium-Atomen auf einer Höhenforschungsrakete entwickelt. Das Lasersystem für den Betrieb des Hauptexperimentes auf MAIUS setzt sich aus vier Diodenlasermodulen zusammen, die das FBH als hybrid-integrierte Lasermodule realisiert hat. Die Master-Laser bestehen jeweils aus einem monolithischen Distributed-Feedback (DFB)-Laser, dessen Frequenz auf die eines optischen Übergangs in Rubidium stabilisiert ist.

Sie erzeugen spektral reine und hochstabile (~ 1 MHz Linienbreite) optische Strahlung geringer Leistung (einige 10 mW) bei 780 Nanometern Wellenlänge. Drei auf diesen Master-Laser referenzierte, hybrid-integrierte Master-Oscillator-Power-Amplifier sind für die Laserkühlung der Atome und für die Interferometrie zuständig. Bei Ihnen wird die Strahlung eines DFB-Lasers ohne Verlust der spektralen Stabilität mit einem Trapezverstärker mit einer Rippenwellenleiter-Eingangssektion bis zu Leistungen jenseits von 1 Watt nachverstärkt.

Um den erfolgreichen Verlauf der Mission zu sichern, wurden zusätzlich zwei Redundanzmodule integriert. Das Laserlicht wird mittels faseroptischer Bauelemente aufbereitet und an die Experimentierkammer weitergeleitet, zum schnellen Schalten des Lichts werden akusto-optische Modulatoren in einem Freistrahlaufbau genutzt.

Zusätzlich wurde für künftige Missionen ein Laser-Technologie-Demonstrator integriert, der zwei vom FBH entwickelte, mikrointegrierte Extended Cavity Diode Laser (ECDL)-Halbleiterlasermodule enthält. Diese Module werden insbesondere für zukünftige Atominterferometrie-Experimente benötigt, die strengere Anforderungen an die spektrale Stabilität der Laser stellen.

Kontakte

Petra Immerz / Dr. Andreas Wicht

Ferdinand-Braun-Institut
Leibniz-Institut für Höchstfrequenztechnik

Gustav-Kirchhoff-Straße 4
12489 Berlin

Tel. +49.30.6392-2626 / -3958
Fax +49.30.6392-2602
E-Mail petra.immerz@fbh-berlin.de ; andreas.wicht@fbh-berlin.de
www.fbh-berlin.de
http://twitter.com/FBH_News

Prof. Achim Peters, PhD / Dr. Markus Krutzik

Humboldt-Universität zu Berlin

AG Optische Metrologie

Tel. +49.30.2093-4905 / -4814

E-Mail    achim.peters@physik.hu-berlin.de ; markus.krutzik@physik.hu-berlin.de

Web     www.physik.hu-berlin.de/en/qom

Über das Joint Lab Laser Metrology

Im Rahmen dieses Joint Labs werden sehr schmalbandige Diodenlaser, unter anderem für die optische Präzisionsspektroskopie im Weltraum entwickelt. Hierbei arbeiten das Ferdinand-Braun-Institut und die Arbeitsgruppe Optische Metrologie der Mathematisch-Naturwissenschaftlichen Fakultät der Humboldt-Universität zu Berlin eng zusammen. Dadurch können die gemeinsamen Interessen und komplementären Expertisen von HU (optische Präzisionsmessungen für fundamentalphysikalische Fragestellungen) und FBH (Halbleiterlaserentwicklung) optimal gebündelt werden.

Petra Immerz / Dr. Andreas Wicht | Ferdinand-Braun-Institut Leibniz-Institut für Höchstfrequenztechnik
Weitere Informationen:
http://www.fbh-berlin.de/de/presse/pressemitteilungen/detail/erstmalig-quantenoptischer-sensor-im-weltraum-getestet-mit-einem-lasersystem-aus-berlin

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Optisches Nanoskop ermöglicht Abbildung von Quantenpunkten
23.01.2018 | Universität Basel

nachricht Reisetauglicher Laser
22.01.2018 | Physikalisch-Technische Bundesanstalt (PTB)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optisches Nanoskop ermöglicht Abbildung von Quantenpunkten

Physiker haben eine lichtmikroskopische Technik entwickelt, mit der sich Atome auf der Nanoskala abbilden lassen. Das neue Verfahren ermöglicht insbesondere, Quantenpunkte in einem Halbleiter-Chip bildlich darzustellen. Dies berichten die Wissenschaftler des Departements Physik und des Swiss Nanoscience Institute der Universität Basel zusammen mit Kollegen der Universität Bochum in «Nature Photonics».

Mikroskope machen Strukturen sichtbar, die dem menschlichen Auge sonst verborgen blieben. Einzelne Moleküle und Atome, die nur Bruchteile eines Nanometers...

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Vollmond-Dreierlei am 31. Januar 2018

Am 31. Januar 2018 fallen zum ersten Mal seit dem 30. Dezember 1982 "Supermond" (ein Vollmond in Erdnähe), "Blutmond" (eine totale Mondfinsternis) und "Blue Moon" (ein zweiter Vollmond im Kalendermonat) zusammen - Beobachter im deutschen Sprachraum verpassen allerdings die sichtbaren Phasen der Mondfinsternis.

Nach den letzten drei Vollmonden am 4. November 2017, 3. Dezember 2017 und 2. Januar 2018 ist auch der bevorstehende Vollmond am 31. Januar 2018 ein...

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks Industrie & Wirtschaft
Veranstaltungen

15. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

23.01.2018 | Veranstaltungen

Gemeinsam innovativ werden

23.01.2018 | Veranstaltungen

Leichtbau zu Ende gedacht – Herausforderung Recycling

23.01.2018 | Veranstaltungen

VideoLinks Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

15. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

23.01.2018 | Veranstaltungsnachrichten

Gemeinsam innovativ werden

23.01.2018 | Veranstaltungsnachrichten

CES Innovation Award für kombinierte Blick- und Spracheingabe im Auto

23.01.2018 | Förderungen Preise

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics