Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Erstes Tagebuch einer Sonneneruption

11.08.2008
Forscher am Max-Planck-Institut für Sonnensystemforschung (MPS) untersuchen, was während eines Ausbruchs auf der Sonne geschieht

Gewaltige Sonneneruptionen schleudern immer wieder riesige Energiemengen in Form von Strahlung und geladenen Teilchen ins All. Auf der Erde können diese Ausbrüche zu Stromausfällen führen oder Satelliten beschädigen. Wissenschaftler vom Max-Planck-Institut für Sonnensystemforschung in Katlenburg-Lindau haben nun erstmals über mehrere Tage verfolgt, wie sich diese Energie in der Sonnenatmosphäre aufbaut und in einer Eruption entlädt. Die Ergebnisse der Forscher könnten dazu beitragen, in Zukunft heftige Strahlungs- und Teilchenausbrüche vorherzusagen. (Astronomy & Astrophysics 9508, 2008)


Instabilitäten des Magnetfeldes auf der Sonnenoberfläche und in der Korona sind für Sonneneruptionen verantwortlich. Bild: Max-Planck-Institut für Sonnensystemforschung

Zeitliche und örtliche Schwankungen des Magnetfeldes sind für diese Ausbrüche in der äußersten Atmosphärenschicht der Sonne verantwortlich, der sogenannten Korona. Was sich dort aber genau abspielt, war bisher aber nur teilweise erforscht und aus einfachen Modellen bekannt. Die Max-Planck-Forscher konnten nun erstmals mit einer von ihnen neu entwickelten Methode den Zeitverlauf der Magnetfelder für zwei Ausbrüche mit größerer Genauigkeit rekonstruieren. Dabei bestätigte sich die Annahme, dass sich ein solches Ereignis schon im Vorfeld ankündigt. Im Fall starker Eruptionen deutet das Magnetfeld schon Tage vorher auf einen Ausbruch hin.

"In den Magnetfeldern baut sich die Energie über mehrere Tage hinweg auf und wird in starken elektrischen Strömen gespeichert", erklärt Thomas Wiegelmann. Ein Teil dieser Energie wird bei der Eruption in Bewegungsenergie umgewandelt und freigesetzt. Zurück bleiben ein Magnetfeld geringerer Energie und schwächere elektrische Ströme.

Da Messungen des Magnetfeldes der Korona nur schwer möglich sind, entschieden sich die Forscher bei ihren Untersuchungen für einen Umweg, der auf der Oberfläche der Sonne beginnt. Denn in der Photosphäre, der sichtbaren Oberfläche der Sonne, ist das Magnetfeld den Messungen zugänglich. Solche Daten liefern etwa Messungen mit den bodengebundenen Instrumenten "Solar Flare Telescope" in Tokio und SOLIS (Synoptic Optical Long-term Investigations of the Sun) in Kitt Peak, Arizona. Mithilfe mathematischer Modelle konnten die Forscher aus diesen Messergebnissen nun die Magnetfelder der Korona berechnen.

"Die heftigste Eruption, die wir untersucht haben, ereignete sich am 20. Januar 2004", sagt Julia Thalmann. Die Rechnungen zeigen, dass dieser Ausbruch innerhalb einer halben Stunde eine Energiemenge freisetzte, die dem Hunderttausendfachen des jährlichen Weltprimärenergieverbrauchs (wie hoch ist dieser?) entspricht. Zudem untersuchten die Wissenschaftler einige weniger starke Eruptionen, die 2007 gemessen wurden. Hier zeigte sich ein ähnlicher zeitlicher Verlauf. Die Menge der freigesetzten Energie war hier jedoch um eine Größenordnung kleiner.

Weitere Untersuchungen, die Daten des Weltraumteleskops SDO (Solar Dynamics Observatory) verwenden, sind geplant. Der SDO-Satellit soll 2009 ins All starten und Daten in nie da gewesener zeitlicher und räumlicher Auflösung liefern.

Originalveröffentlichung:

J.K. Thalmann, T. Wiegelmann
Evolution of the flaring active region NOAA 10540 as a sequence of nonlinear force-free field extrapolations

Astronomy & Astrophysics 9508 (2008)

Dr. Christina Beck | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Heiße Materialien: Fachartikel zum pyroelektrischen Koeffizienten
23.05.2017 | Technische Universität Bergakademie Freiberg

nachricht Forschung in Rekordzeit zum Planeten TRAPPIST-1h
23.05.2017 | Universität Bern

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Im Focus: Neuer Ionisationsweg in molekularem Wasserstoff identifiziert

„Wackelndes“ Molekül schüttelt Elektron ab

Wie reagiert molekularer Wasserstoff auf Beschuss mit intensiven ultrakurzen Laserpulsen? Forscher am Heidelberger MPI für Kernphysik haben neben bekannten...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Aachener Werkzeugmaschinen-Kolloquium 2017: Internet of Production für agile Unternehmen

23.05.2017 | Veranstaltungen

14. Dortmunder MST-Konferenz zeigt individualisierte Gesundheitslösungen mit Mikro- und Nanotechnik

22.05.2017 | Veranstaltungen

Branchentreff für IT-Entscheider - Rittal Praxistage IT in Stuttgart und München

22.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

WHZ erhält hochmodernen Prüfkomplex für Schraubenverbindungen

23.05.2017 | Maschinenbau

«Schwangere» Stubenfliegenmännchen zeigen Evolution der Geschlechtsbestimmung

23.05.2017 | Biowissenschaften Chemie

Tumult im trägen Elektronen-Dasein

23.05.2017 | Physik Astronomie