Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

„Erstes Licht“ des weltgrößten Tscherenkow-Teleskops H.E.S.S. II: Tübinger Forscher sind dabei

13.08.2012
Von dem Instrument in Namibia erhoffen sich die Astrophysiker neue Einblicke in die energiereichsten und extremsten Phänomene im Universum.

Seit Ende Juli hat das aus vier 12-Meter-Spiegeln bestehende H.E.S.S.-Observatorium (High Energy Stereoscopic System) zur Untersuchung der kosmischen Gammastrahlen in Namibia Verstärkung:


Mitglieder der Tübinger Mannschaft beim Klettern in der Struktur des neuen Teleskops, während der Spiegelaktuator-Montagekampagne auf dem H.E.S.S.-Gelände Ende 2011. Alle Spiegelaktuatoren des H.E.S.S.-II-Teleskops wurden von der H.E.S.S.-Gruppe des Instituts für Astronomie und Astrophysik Tübingen vorbereitet. © H.E.S.S. Collaboration, Eckhard Kendziorra/IAAT


Neues Gamma-Auge für die H.E.S.S.-Familie: Das Teleskop besitzt einen Antennendurchmesser von 28 Metern und wiegt fast 600 Tonnen. © H.E.S.S. Collaboration, Clementina Medina/Irfu-CEA

Das neue Teleskop H.E.S.S. II besitzt einen 28-Meter-Spiegel und ist damit das größte jemals gebaute Tscherenkow-Teleskop. Mit solchen Teleskopen können Forscher die energiereichsten und extremsten Phänomene im Universum im sehr hochenergetischen Gammalicht beobachten.

Die Universität Tübingen ist durch die Abteilung Hochenergieastrophysik des Instituts für Astronomie und Astrophysik Tübingen (IAAT) an der internationalen Kooperation für den Bau und Betrieb der Teleskope beteiligt, finanziell unterstützt vom Bundesministerium für Bildung und Forschung (BMBF).

Bisher kennen die Wissenschaftler mehr als 100 kosmische Quellen höchstenergetischer Gammastrahlen. Mit dem neuen Instrument nahe des Gamsbergs in Namibia wollen die Astrophysiker nicht nur diese Objekte detaillierter erforschen, sondern auch neue Quellen entdecken. Davon versprechen sich die Forscher ein tieferes Verständnis bekannter hochenergetischer kosmischer Strahlungsquellen wie supermassiver schwarzer Löcher, Pulsare und Supernovae, aber auch die Entdeckung neuer Klassen hochenergetischer kosmischer Quellen.

Das neue Teleskop wiegt fast 600 Tonnen, sein 28-Meter-Spiegel entspricht der Fläche von zwei Tennisplätzen. Am 26. Juli um 0.43 Uhr MEZ hat es „erstes Licht“ gesehen, das heißt, es hat Bilder von atmosphärischen Teilchenschauern aufgenommen, die von kosmischen Gammastrahlen oder von kosmischer Strahlung erzeugt werden. „Das neue Teleskop löst die Bilder der Teilchenschauer mit beispiellosem Detailreichtum auf, da es viermal mehr Pixel pro Himmelsfläche besitzt als die kleineren Teleskope“, berichtet Dr. Pascal Vincent vom französischen Team, das für die Lichtsensor-Einheit (Kamera) im Fokus des Spiegels verantwortlich ist.

Die Tübinger Astrophysiker arbeiteten mit dem Max-Planck-Institut für Kernphysik Heidelberg und polnischen Gruppen zusammen, um die Maschinerie zur Aufhängung und Ausrichtung aller 875 Spiegelfacetten bereitzustellen. Diese bilden schlussendlich die reflektierende Oberfläche des Teleskops.

„Die reine Menge der Teile war eine Herausforderung für das Institut“ sagt Dr. Gerd Pühlhofer, der die Hochenergie-Gammaaktivitäten am Institut koordiniert. „Wir haben nicht nur die Elektronik und die Software für das Spiegelausrichtungssystem entworfen und produziert. Wir haben darüber hinaus alle 1750 Aktuatoren, also die Spiegelverstelleinheiten, mit unserer Elektronik ausgerüstet, sie getestet, nach Namibia verschifft und am Teleskop montiert. Darüber hinaus wurden auch alle Glasspiegelfacetten durch das Institut geschleust unter anderem für Qualitätstests in unserer 70m langen Teststrecke im Institutskeller.“

„Ich bin froh, dass das Spiegelsystem wie erwartet funktioniert“ sagt Stefan Schwarzburg, der aus Namibia zurückkommen musste, um seine Doktorprüfung an der Universität abzulegen. Zusammen mit Dr. Eckhard Kendziorra war er wissenschaftlich und technisch für die H.E.S.S.-Spiegelarbeiten am IAAT verantwortlich.
„Sehr viele unserer Werkstattmitarbeiter, Studenten und Wissenschaftler haben hart und unermüdlich gearbeitet, um die Sache über die Bühne zu bringen“, sagt Prof. Dr. Andrea Santangelo, Leiter der Abteilung Hochenergieastrophysik am IAAT. „Auch bei der Vorbereitung der nächsten Teleskop-Generation, dem Cherenkov Telescope Array CTA, ist die Universität Tübingen intensiv an der Entwicklung dieses spannenden Zweiges der Astroteilchenphysik beteiligt. “

H.E.S.S. im Internet: http://www.mpi-hd.mpg.de/hfm/HESS
Kontakt:

Prof. Dr. Andrea Santangelo
Universität Tübingen
Mathematisch-Naturwissenschaftliche Fakultät
Institut für Astronomie und Astrophysik/Kepler Center for Astro and Particle Physics
Telefon +49 7071 29-78128
Santangelo[at]astro.uni-tuebingen.de

Dr. Gerd Pühlhofer
Universität Tübingen
Mathematisch-Naturwissenschaftliche Fakultät
Institut für Astronomie und Astrophysik/Kepler Center for Astro and Particle Physics
Telefon +49 7071 29-74982
Gerd.Puehlhofer[at]astro.uni-tuebingen.de

Dr. Chris Tenzer
Universität Tübingen
Mathematisch-Naturwissenschaftliche Fakultät
Institut für Astronomie und Astrophysik/Kepler Center for Astro and Particle Physics
Telefon +49 7071 29-75473
tenzer[at]astro.uni-tuebingen.de

Michael Seifert | idw
Weitere Informationen:
http://www.uni-tuebingen.de
http://www.mpi-hd.mpg.de/hfm/HESS

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Erforschung von Elementarteilchen in Materialien
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Vermeintlich junger Stern entpuppt sich als galaktischer Greis
16.01.2017 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Erforschung von Elementarteilchen in Materialien

Laseranregung von Semimetallen ermöglicht die Erzeugung neuartiger Quasiteilchen in Festkörpersystemen sowie ultraschnelle Schaltung zwischen verschiedenen Zuständen.

Die Untersuchung der Eigenschaften fundamentaler Teilchen in Festkörpersystemen ist ein vielversprechender Ansatz für die Quantenfeldtheorie. Quasiteilchen...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Mit solaren Gebäudehüllen Architektur gestalten

Solarthermie ist in der breiten Öffentlichkeit derzeit durch dunkelblaue, rechteckige Kollektoren auf Hausdächern besetzt. Für ästhetisch hochwertige Architektur werden Technologien benötigt, die dem Architekten mehr Gestaltungsspielraum für Niedrigst- und Plusenergiegebäude geben. Im Projekt »ArKol« entwickeln Forscher des Fraunhofer ISE gemeinsam mit Partnern aktuell zwei Fassadenkollektoren für solare Wärmeerzeugung, die ein hohes Maß an Designflexibilität erlauben: einen Streifenkollektor für opake sowie eine solarthermische Jalousie für transparente Fassadenanteile. Der aktuelle Stand der beiden Entwicklungen wird auf der BAU 2017 vorgestellt.

Im Projekt »ArKol – Entwicklung von architektonisch hoch integrierten Fassadekollektoren mit Heat Pipes« entwickelt das Fraunhofer ISE gemeinsam mit Partnern...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungen

Über intelligente IT-Systeme und große Datenberge

17.01.2017 | Veranstaltungen

Aquakulturen und Fangquoten – was hilft gegen Überfischung?

16.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungsnachrichten

Intelligente Haustechnik hört auf „LISTEN“

17.01.2017 | Architektur Bauwesen

Satellitengestützte Lasermesstechnik gegen den Klimawandel

17.01.2017 | Maschinenbau