Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

„Erstes Licht“ des weltgrößten Tscherenkow-Teleskops H.E.S.S. II: Tübinger Forscher sind dabei

13.08.2012
Von dem Instrument in Namibia erhoffen sich die Astrophysiker neue Einblicke in die energiereichsten und extremsten Phänomene im Universum.

Seit Ende Juli hat das aus vier 12-Meter-Spiegeln bestehende H.E.S.S.-Observatorium (High Energy Stereoscopic System) zur Untersuchung der kosmischen Gammastrahlen in Namibia Verstärkung:


Mitglieder der Tübinger Mannschaft beim Klettern in der Struktur des neuen Teleskops, während der Spiegelaktuator-Montagekampagne auf dem H.E.S.S.-Gelände Ende 2011. Alle Spiegelaktuatoren des H.E.S.S.-II-Teleskops wurden von der H.E.S.S.-Gruppe des Instituts für Astronomie und Astrophysik Tübingen vorbereitet. © H.E.S.S. Collaboration, Eckhard Kendziorra/IAAT


Neues Gamma-Auge für die H.E.S.S.-Familie: Das Teleskop besitzt einen Antennendurchmesser von 28 Metern und wiegt fast 600 Tonnen. © H.E.S.S. Collaboration, Clementina Medina/Irfu-CEA

Das neue Teleskop H.E.S.S. II besitzt einen 28-Meter-Spiegel und ist damit das größte jemals gebaute Tscherenkow-Teleskop. Mit solchen Teleskopen können Forscher die energiereichsten und extremsten Phänomene im Universum im sehr hochenergetischen Gammalicht beobachten.

Die Universität Tübingen ist durch die Abteilung Hochenergieastrophysik des Instituts für Astronomie und Astrophysik Tübingen (IAAT) an der internationalen Kooperation für den Bau und Betrieb der Teleskope beteiligt, finanziell unterstützt vom Bundesministerium für Bildung und Forschung (BMBF).

Bisher kennen die Wissenschaftler mehr als 100 kosmische Quellen höchstenergetischer Gammastrahlen. Mit dem neuen Instrument nahe des Gamsbergs in Namibia wollen die Astrophysiker nicht nur diese Objekte detaillierter erforschen, sondern auch neue Quellen entdecken. Davon versprechen sich die Forscher ein tieferes Verständnis bekannter hochenergetischer kosmischer Strahlungsquellen wie supermassiver schwarzer Löcher, Pulsare und Supernovae, aber auch die Entdeckung neuer Klassen hochenergetischer kosmischer Quellen.

Das neue Teleskop wiegt fast 600 Tonnen, sein 28-Meter-Spiegel entspricht der Fläche von zwei Tennisplätzen. Am 26. Juli um 0.43 Uhr MEZ hat es „erstes Licht“ gesehen, das heißt, es hat Bilder von atmosphärischen Teilchenschauern aufgenommen, die von kosmischen Gammastrahlen oder von kosmischer Strahlung erzeugt werden. „Das neue Teleskop löst die Bilder der Teilchenschauer mit beispiellosem Detailreichtum auf, da es viermal mehr Pixel pro Himmelsfläche besitzt als die kleineren Teleskope“, berichtet Dr. Pascal Vincent vom französischen Team, das für die Lichtsensor-Einheit (Kamera) im Fokus des Spiegels verantwortlich ist.

Die Tübinger Astrophysiker arbeiteten mit dem Max-Planck-Institut für Kernphysik Heidelberg und polnischen Gruppen zusammen, um die Maschinerie zur Aufhängung und Ausrichtung aller 875 Spiegelfacetten bereitzustellen. Diese bilden schlussendlich die reflektierende Oberfläche des Teleskops.

„Die reine Menge der Teile war eine Herausforderung für das Institut“ sagt Dr. Gerd Pühlhofer, der die Hochenergie-Gammaaktivitäten am Institut koordiniert. „Wir haben nicht nur die Elektronik und die Software für das Spiegelausrichtungssystem entworfen und produziert. Wir haben darüber hinaus alle 1750 Aktuatoren, also die Spiegelverstelleinheiten, mit unserer Elektronik ausgerüstet, sie getestet, nach Namibia verschifft und am Teleskop montiert. Darüber hinaus wurden auch alle Glasspiegelfacetten durch das Institut geschleust unter anderem für Qualitätstests in unserer 70m langen Teststrecke im Institutskeller.“

„Ich bin froh, dass das Spiegelsystem wie erwartet funktioniert“ sagt Stefan Schwarzburg, der aus Namibia zurückkommen musste, um seine Doktorprüfung an der Universität abzulegen. Zusammen mit Dr. Eckhard Kendziorra war er wissenschaftlich und technisch für die H.E.S.S.-Spiegelarbeiten am IAAT verantwortlich.
„Sehr viele unserer Werkstattmitarbeiter, Studenten und Wissenschaftler haben hart und unermüdlich gearbeitet, um die Sache über die Bühne zu bringen“, sagt Prof. Dr. Andrea Santangelo, Leiter der Abteilung Hochenergieastrophysik am IAAT. „Auch bei der Vorbereitung der nächsten Teleskop-Generation, dem Cherenkov Telescope Array CTA, ist die Universität Tübingen intensiv an der Entwicklung dieses spannenden Zweiges der Astroteilchenphysik beteiligt. “

H.E.S.S. im Internet: http://www.mpi-hd.mpg.de/hfm/HESS
Kontakt:

Prof. Dr. Andrea Santangelo
Universität Tübingen
Mathematisch-Naturwissenschaftliche Fakultät
Institut für Astronomie und Astrophysik/Kepler Center for Astro and Particle Physics
Telefon +49 7071 29-78128
Santangelo[at]astro.uni-tuebingen.de

Dr. Gerd Pühlhofer
Universität Tübingen
Mathematisch-Naturwissenschaftliche Fakultät
Institut für Astronomie und Astrophysik/Kepler Center for Astro and Particle Physics
Telefon +49 7071 29-74982
Gerd.Puehlhofer[at]astro.uni-tuebingen.de

Dr. Chris Tenzer
Universität Tübingen
Mathematisch-Naturwissenschaftliche Fakultät
Institut für Astronomie und Astrophysik/Kepler Center for Astro and Particle Physics
Telefon +49 7071 29-75473
tenzer[at]astro.uni-tuebingen.de

Michael Seifert | idw
Weitere Informationen:
http://www.uni-tuebingen.de
http://www.mpi-hd.mpg.de/hfm/HESS

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Proteintransport - Stau in der Zelle
24.03.2017 | Ludwig-Maximilians-Universität München

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise