Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Erstes Licht für den 3D-Spektrografen MUSE am Very Large Telescope

05.03.2014

Pressemitteilung der Europäischen Südsternwarte (Garching) - Ein neues innovatives Instrument namens MUSE (Multi Unit Spectroscopic Explorer) wurde erfolgreich am Very Large Telescope (VLT) der ESO am Paranal-Observatorium in Chile montiert. Während der ersten, äußerst erfolgreichen Beobachtungsperiode wurden mit MUSE weit entfernte Galaxien, helle Sterne und weitere Testobjekte aufgenommen.

Nach ersten Tests und einer Vorabnahme in Europa im September 2013 wurde MUSE zum Paranal-Observatorium der ESO in Chile verschifft. Das Instrument wurde im Basislager wieder zusammengebaut, bevor es vorsichtig zu seinem neuen Zuhause am VLT transportiert wurde, wo es nun am Hauptteleskop 4 angebracht ist. MUSE ist das neueste Instrument der zweiten Generation am VLT (die ersten beiden waren X-Shooter und KMOS, als nächstes wird in Kürze SPHERE folgen).

MUSE-Ansicht des Orionnebels

MUSE-Ansicht des Orionnebels.

Illustration: ESO/MUSE consortium/R. Bacon/L. Calçada

Der Gruppenleiter und Projektleiter für das Instrument, Roland Bacon vom Centre de Recherche Astrophysique de Lyon, Frankreich äußerte sich dazu wie folgt: „Es hat viel Arbeit von vielen Menschen über lange Jahre gebraucht, aber wir haben es geschafft! Es erscheint seltsam, dass diese sieben Tonnen schwere Ansammlung von Optik, Mechanik und Elektronik nun eine fantastische Zeitmaschine zur Erforschung des frühen Universums ist. Wir sind sehr stolz auf diese Leistung – MUSE wird für viele Jahre ein einzigartiges Instrument bleiben.“

Das wissenschaftliche Ziel von MUSE ist es, in die frühen Epochen des Universums einzutauchen, um die Mechanismen der Entstehung von Galaxien und sowohl die Bewegung des Materials in nahen Galaxien als auch deren chemische Zusammensetzung zu untersuchen. Es wird viele weitere Anwendungen finden, die von der Erforschung der Planeten und Trabanten im Sonnensystem über die Eigenschaften von Sternentstehungsregionen in der Milchstraße bis hin zur Erkundung ferner Regionen des Universums reichen.

Als ein einzigartiges und leistungsstarkes Entdeckungswerkzeug benutzt MUSE 24 Spektrografen, die Licht in seine Farbkomponenten spalten, um sowohl Bilder als auch Spektren von ausgewählten Himmelsregionen zu erstellen. Das Instrument kreiert 3D-Ansichten des Universums mit einem Spektrum für jedes Pixel als die dritte Dimension [1]. In der nachfolgenden Analyse kann der Astronom durch die Daten gehen und verschiedene Ansichten eines Objekts bei unterschiedlichen Wellenlängen studieren, so als würde man bei einem Fernseher die Sender wechseln, die individuelle Frequenzen haben.

MUSE kombiniert das Entdeckungspotential eines bildgebenden Geräts mit den messtechnischen Fähigkeiten eines Spektrografen, während es sich der deutlich besseren Bildschärfe durch adaptive Optik bedient. Das Instrument ist am Hauptteleskop 4 des VLT angebracht, das zur Zeit zu einem voll adaptiven Teleskop umgebaut wird.

MUSE ist das Ergebnis von zehn Jahren Design- und Entwicklungsarbeit durch das MUSE-Konsortium – angeleitet vom Centre de Recherche Astrophysique de Lyon in Frankreich und den Partnerinstituten. Darunter befinden sich neben dem Institut für Astronomie ETH Zürich (Schweiz), dem Institut de Recherche en Astrophysique et Planétologie (IRAP, Frankreich), der Nederlandse Onderzoekschool voor de Astronomie (NOVA, Niederlande) und der ESO auch zwei deutsche Einrichtungen: das Leibniz-Institut für Astrophysik in Potsdam (AIP) und das Institut für Astrophysik der Universität Göttingen (IAG).

Seit Anfang 2014 haben Bacon und der Rest des MUSE-Integrations- und Inbetriebnahme-Teams am Paranal die Geschichte von MUSE in einer Reihe von Blog-Einträgen festgehalten, die hier verfolgt werden können. Das Team will die ersten Ergebnisse von MUSE am bevorstehenden 3D2014-Workshop an der ESO in Garching bei München präsentieren.

„Eine Muse sorgt für Inspiration. In der Tat hat MUSE uns viele Jahre lang inspiriert und wird damit weitermachen”, sagt Bacon in einem Blog-Eintrag über das erste Licht. „Es besteht kein Zweifel daran, dass viele Astronomen auf der ganzen Welt ebenfalls von MUSE entzückt sein werden.”

Endnoten

[1] Diese Methode, Integralfeldspektroskopie genannt, erlaubt es Astronomen gleichzeitig die Eigenschaften von verschiedenen Teilen eines Objekts wie einer Galaxie zu untersuchen, um zu sehen wie sie rotiert oder um ihre Masse zu bestimmen. Sie erlaubt ebenfalls die chemische Zusammensetzung und andere physikalische Eigenschaften in unterschiedlichen Teilen des Objekts zu bestimmen. Diese Methode wird zwar seit vielen Jahren eingesetzt, hat aber mit MUSE einen Sprung in Sachen Empfindlichkeit, Effizienz und Auflösung vollbracht. Eine Möglichkeit dies zu beschreiben wäre zu sagen, dass MUSE gleichzeitig hochauflösende Bildgebung mit Spektroskopie vereint.

Zusatzinformationen

Die Europäische Südsternwarte ESO (European Southern Observatory) ist die führende europäische Organisation für astronomische Forschung und das wissenschaftlich produktivste Observatorium der Welt. Getragen wird die Organisation durch ihre 15 Mitgliedsländer: Belgien, Brasilien, Dänemark, Deutschland, Finnland, Frankreich, Großbritannien, Italien, die Niederlande, Österreich, Portugal, Spanien, Schweden, die Schweiz und die Tschechische Republik. Die ESO ermöglicht astronomische Spitzenforschung, indem sie leistungsfähige bodengebundene Teleskope entwirft, konstruiert und betreibt. Auch bei der Förderung internationaler Zusammenarbeit auf dem Gebiet der Astronomie spielt die Organisation eine maßgebliche Rolle. Die ESO betreibt drei weltweit einzigartige Beobachtungsstandorte in Nordchile: La Silla, Paranal und Chajnantor. Auf dem Paranal betreibt die ESO mit dem Very Large Telescope (VLT) das weltweit leistungsfähigste Observatorium für Beobachtungen im Bereich des sichtbaren Lichts und zwei Teleskope für Himmelsdurchmusterungen: VISTA, das größte Durchmusterungsteleskop der Welt, arbeitet im Infraroten, während das VLT Survey Telescope (VST) für Himmelsdurchmusterungen ausschließlich im sichtbaren Licht konzipiert ist. Die ESO ist der europäische Partner bei den neuartigen Teleskopverbund ALMA, dem größten astronomischen Projekt überhaupt. Derzeit entwickelt die ESO ein Großteleskop mit 39 Metern Durchmesser für Beobachtungen im Bereich des sichtbaren und Infrarotlichts, das einmal das größte optische Teleskop der Welt werden wird: das European Extremely Large Telescope (E-ELT).

Die Übersetzungen von englischsprachigen ESO-Pressemitteilungen sind ein Service des ESO Science Outreach Network (ESON), eines internationalen Netzwerks für astronomische Öffentlichkeitsarbeit, in dem Wissenschaftler und Wissenschaftskommunikatoren aus allen ESO-Mitgliedsländern (und einigen weiteren Staaten) vertreten sind. Deutscher Knoten des Netzwerks ist das Haus der Astronomie in Heidelberg.

Kontaktinformationen

Carolin Liefke
ESO Science Outreach Network - Haus der Astronomie
Heidelberg, Deutschland
Tel: 06221 528 226
E-Mail: eson-germany@eso.org

Roland Bacon
Lyon Centre for Astrophysics Research (CRAL)
Frankreich
Handy: +33 6 08 09 14 27
E-Mail: rmb@obs.univ-lyon1.fr

Richard Hook
ESO, Public Information Officer
Garching bei München
Tel: +49 89 3200 6655
Handy: +49 151 1537 3591
E-Mail: rhook@eso.org

Marcella Carollo
Institut für Astronomie ETH Zürich
Zürich, Schweiz
Tel: +41 44 633 3725
E-Mail: marcella@phys.ethz.ch

Thierry Contini
Institut de Recherche en Astrophysique et Planétologie (IRAP)
Toulouse, Frankreich
Tel: +33 5 61 33 28 14
E-Mail: Thierry.Contini@irap.omp.eu

Harald Nicklas
Institut für Astrophysik (IAG)
Göttingen
Tel: +49 551 39 50 -39
E-Mail: nicklas@astro.physik.uni-goettingen.de

Joop Schaye
Leiden Observatory (NOVA)
Leiden, Niederlande
Handy: +31 (71) 527 8443
E-Mail: schaye@strw.leidenuniv.nl

Lutz Wisotzki
Leibniz-Institut für Astrophysik Potsdam (AIP)
Potsdam
Tel: +49 331 7499 532
E-Mail: lwisotzki@aip.de

Weitere Informationen:

http://www.eso.org/public/germany/news/eso1407/ - Webversion der Pressemitteilung mit weiteren Bildern und Videos (auch in höher aufgelösten Versionen). Zugang vor Ablauf der Sperrfrist bitte bei Lars Lindberg Christensen (lars@eso.org) erfragen
http://muse-vlt.eu/blog/MUSE-Comm/Blog/Blog.html - Der MUSE-Blog
http://eso.org/sci/facilities/develop/instruments/muse.html - MUSE-Instrumentenseite bei der ESO

Dr. Carolin Liefke | ESO Science Outreach Network

Weitere Berichte zu: Astronomie Astrophysik ESO Licht MUSE Network Outreach Science Telescope VLT

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Die schnellste lichtgetriebene Stromquelle der Welt
26.09.2017 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Internationales Forscherteam entdeckt kohärenten Lichtverstärkungsprozess in Laser-angeregtem Glas
25.09.2017 | Universität Kassel

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die schnellste lichtgetriebene Stromquelle der Welt

Die Stromregelung ist eine der wichtigsten Komponenten moderner Elektronik, denn über schnell angesteuerte Elektronenströme werden Daten und Signale übertragen. Die Ansprüche an die Schnelligkeit der Datenübertragung wachsen dabei beständig. In eine ganz neue Dimension der schnellen Stromregelung sind nun Wissenschaftler der Lehrstühle für Laserphysik und Angewandte Physik an der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) vorgedrungen. Ihnen ist es gelungen, im „Wundermaterial“ Graphen Elektronenströme innerhalb von einer Femtosekunde in die gewünschte Richtung zu lenken – eine Femtosekunde entspricht dabei dem millionsten Teil einer milliardstel Sekunde.

Der Trick: die Elektronen werden von einer einzigen Schwingung eines Lichtpulses angetrieben. Damit können sie den Vorgang um mehr als das Tausendfache im...

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Im Spannungsfeld von Biologie und Modellierung

26.09.2017 | Veranstaltungen

Archaeopteryx, Klimawandel und Zugvögel: Deutsche Ornithologen-Gesellschaft tagt an der Uni Halle

26.09.2017 | Veranstaltungen

Unsere Arbeitswelt von morgen – Polarisierendes Thema beim 7. Unternehmertag der HNEE

26.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Europas erste Testumgebung für selbstfahrende Züge entsteht im Burgenland

26.09.2017 | Verkehr Logistik

Nerven steuern die Bakterienbesiedlung des Körpers

26.09.2017 | Biowissenschaften Chemie

Mit künstlicher Intelligenz zum chemischen Fingerabdruck

26.09.2017 | Biowissenschaften Chemie