Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Erstes Bose-Einstein-Kondensat mit Strontiumatomen

10.11.2009
Innsbrucker Quantenphysiker entscheiden internationalen Wettlauf für sich

Forscher des Instituts für Quantenoptik und Quanteninformation (IQOQI) haben weltweit zum ersten Mal ein Bose-Einstein-Kondensat aus dem Erdalkalielement Strontium erzeugt. Sie entschieden damit ein internationales Wettrennen unter Top-Physikern knapp für sich. Dabei erwies sich die Wahl des bisher kaum beachteten Isotops 84Sr als Weg zum Durchbruch. Es gilt nun als idealer Kandidat für Experimente mit atomaren Zwei-Elektronen-Systemen.


Forscher des Instituts für Quantenoptik und Quanteninformation (IQOQI) haben zum ersten Mal ein Bose-Einstein-Kondensat aus Strontiumatomen erzeugt. Photo: IQOQI

Schon mehr als einmal haben die Quantenphysiker um Prof. Rudolf Grimm ein Wettrennen unter Wissenschaftlern für sich entschieden. So erzeugten sie 2002 das weltweit erste Bose-Einstein-Kondensat aus Cäsiumatomen. Nun gelang es einem Team um den Nachwuchsforscher Dr. Florian Schreck das weltweit erste Bose-Einstein-Kondensat aus Stontiumatomen zu erzeugen. Die Experimentalphysiker haben damit einen internationalen Wettlauf knapp für sich entschieden. Und dies, obwohl sie mit ihren Experimenten sehr viel später gestartet sind, als die konkurrierenden Forschungsgruppen in den USA. „Wir haben dabei auf das richtige Pferd gesetzt und zuletzt Tag und Nacht durchgearbeitet, um das Bose-Einstein-Kondensat zu realisieren“, erzählt Schreck. Schon seit Jahren versuchten Physiker aus aller Welt, Strontium zu kondensieren. Sie bedienten sich dabei allerdings jener beiden Isotope des Strontiums, die in der Natur besonders häufig vorkommen (86Sr, 88Sr). „Vor einem Jahr hatte ich die Idee, es mit dem sehr seltenen Isotop 84Sr zu probieren“, schildert Schreck den Moment des Durchbruchs. Dass er auf dem richtigen Weg ist, wusste der Physiker, als auf seinen Vorschlag hin ein Theoretiker die Streueigenschaften des Isotops berechnete. Diese erwiesen sich als ideal für die Herstellung eines Bose-Einstein-Kondensats.

Strontium erstmals kondensiert
Unter Vakuum fingen die Experimentalphysiker die Strontiumatome mit Lasern in einer magnetischen Falle ein und kühlten sie stark ab. Nach der Überführung in eine optische Falle konnten sie die Teilchen dann aufgrund ihrer guten Streueigenschaften – die Atome stoßen zwar aneinander, bilden aber keine Moleküle – mit Hilfe von Verdampfungskühlung bis nahe an den absoluten Nullpunkt (- 273,15 ºC) abkühlen. Dabei entstand ein Bose-Einstein-Kondensat aus rund 150000 Atomen. In diesem Zustand verhalten sich die Atome völlig synchron und bilden einen gänzlich neuartigen, kollektiven Zustand. Was für einige andere chemische Elemente bereits gezeigt wurde, gelang dem Team vom Institut für Quantenoptik und Quanteninformation (IQOQI) der Österreichischen Akademie der Wissenschaften (ÖAW) nun auch mit Strontium.
Heißes Forschungsthema
Strontium zählt zu den atomaren Zwei-Elektronen-Systemen, das sind Elemente, deren Atome über zwei Valenzelektronen verfügen. Während die meisten Atome mit einem Valenzelektron längst erfolgreich kondensiert wurden (2001 wurde dafür der Physik-Nobelpreis verliehen), sind Bose-Einstein-Kondensate von Zwei-Elektronen-Systemen derzeit ein heißes Thema in der Physik. Die ersten beiden Zwei-Elektronen-Systeme wurden 2003 (Ytterbium) und im Juni 2009 (Kalzium) erstmals kondensiert. Aus Strontiumatomen können allerdings sehr viel größere Kondensate erzeugt werden. Nur zwei Wochen nach den Innsbrucker Physikern gelang es nun einer amerikanischen Forschungsgruppe ebenfalls ein Bose-Einstein-Kondensat aus Strontiumatomen zu erzeugen. Beide Forschungsarbeiten wurden jetzt gemeinsam in der Fachzeitschrift Physical Review Letters veröffentlicht. Mit Bose-Einstein-Kondensaten lassen sich die Grundlagen der Quantenmechanik untersuchen, sie können als Modell für Festkörper dienen oder in der Quanteninformation eingesetzt werden. Zwei-Elektronen-Systeme wie Strontium sind besonders für Präzisionsmessungen von Interesse, weil sie über sehr schmale optische Übergänge verfügen und damit noch genauere Untersuchungen erlauben.

„Entscheidend für unseren Erfolg waren auch die Möglichkeiten, die das Institut für Quantenoptik und Quanteninformation (IQOQI) bietet“, betont Rudolf Grimm. „Wir hatten den Freiraum, etwas ganz Neues auszuprobieren und in dieses internationale Wettrennen einzusteigen.“ Für Florian Schreck und sein Team geht die Arbeit bereits weiter. Neben den schon erwähnten drei bosonischen Isotopen des Strontiums gibt es auch das fermionische Isotop 87Sr. Dieses möchte Florian Schreck nun nützen, um erstmals ein ultrakaltes Fermigas aus Strontiumatomen herzustellen.

Publikation: Bose-Einstein Condensation of Strontium. Simon Stellmer, Meng Khoon Tey, Bo Huang, Rudolf Grimm und Florian Schreck. Phys. Rev. Lett. 103, 200401 (2009) (http://link.aps.org/doi/10.1103/PhysRevLett.103.200401)

Kontakt:
Prof. Rudolf Grimm
Institut für Quantenoptik und Quanteninformation (IQOQI)
Österreichische Akademie der Wissenschaften (ÖAW)
Technikerstr. 21a, 6020 Innsbruck, Austria
Tel: +43 512 507 6300 od. 4760
Email: rudolf.grimm@oeaw.ac.at

Prof. Rudolf Grimm | IQOQI
Weitere Informationen:
http://www.ultracold.at
http://link.aps.org/doi/10.1103/PhysRevLett.103.200401

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Speicherdauer von Qubits für Quantencomputer weiter verbessert
09.12.2016 | Forschungszentrum Jülich

nachricht Elektronenautobahn im Kristall
09.12.2016 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie