Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Erster Blick auf eine neue Welt

08.12.2014

Die Raumsonde Dawn sendet Bild des Kleinplaneten Ceres zur Erde

Mehr als 413 Millionen Kilometer entfernt von der wärmenden Sonne, mitten im Asteroidengürtel zwischen den Umlaufbahnen von Mars und Jupiter, zieht ein seltsamer Körper seine Bahnen: Ceres, der größte Asteroid im Sonnensystem. Mit einem Durchmesser von etwa 950 Kilometern und nahezu kugelförmiger Gestalt gleicht er eher einem Planeten als einem Asteroiden. Im Frühjahr 2015 kommt die NASA-Raumsonde Dawn an dieser geheimnisvollen Welt an. Bereits jetzt – aus einer Entfernung von etwa 1,2 Millionen Kilometern – hat das Kamerasystem einen Blick auf das entfernte Ziel geworfen. Der Endspurt zu Ceres hat begonnen.


Ceres im Fokus: Ein Blick auf den Kleinplaneten, aufgenommen am 1. Dezember 2014 aus einer Entfernung von 1,2 Millionen Kilometern. Ceres ist der helle Fleck in der Bildmitte. Da Ceres deutlich heller ist als die Sterne im Hintergrund, hat das Kamerateam eine lange Belichtungszeit gewählt, um diese Sterne sichtbar zu machen. Die übertriebene Größe von Ceres, die daraus resultiert, wurde durch Überlagern eines kurzen Schnappschusses des Asteroiden korrigiert. Auf dem Ausschnitt unten links hat Ceres einen Durchmesser von gerade einmal neun Pixeln.

© NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

Die Raumsonde Dawn ist kein Neuling im Asteroidengürtel. Nach ihrem Start im September 2007 schwenkte sie am 16. Juli 2011 in eine Umlaufbahn um den Asteroiden Vesta ein. Mehr als ein Jahr lang untersuchte Dawn den etwa 530 Kilometer großen Körper und fand eine Welt von bizarrer Schönheit – mit unzähligen Kratern, tiefen Rillen und einem der höchsten Berge im Sonnensystem.

„Vesta ist eine steinige Welt. Ihr innerer Aufbau ähnelt dem der Erde“, sagt Andreas Nathues vom Göttinger Max-Planck-Institut für Sonnensystemforschung, der das Kamerateam von Dawn leitet. „Für den zweiten Teil der Mission am Kleinplaneten Ceres müssen wir uns nun auf ganz andere Bedingungen einstellen“, fügt er hinzu.

Obwohl Vesta und Ceres beide im Asteroidengürtel zuhause sind, unterscheiden sie sich deutlich. Wenn auch viel kleiner, gleicht Vesta den inneren Planeten Merkur, Venus, Erde und Mars. Manche Forscher bezeichnen den Körper sogar als fünften Vertreter dieser Gruppe. Ceres hingegen erinnert eher an die eisigen Monde der äußeren Planeten Jupiter und Saturn: tiefgefroren und wasserhaltig.

Zudem besitzt der Kleinplanet möglicherweise eine Atmosphäre aus Wasserdampf, die aus unterirdischen Reservoirs gespeist wird. Messungen mit dem Weltraumteleskop Herschel deuten jedenfalls darauf hin, dass Ceres gelegentlich Wasserdampf ins All spuckt – ähnlich wie der Saturnmond Enceladus, nur in deutlich geringerem Ausmaß.

„Die Mission Dawn wird uns helfen zu verstehen, wie sich solche wasserreichen Asteroiden gebildet haben und wie sie bis heute aktiv sein können“, sagt Missionsleiter Chris Russell von der University of California in Los Angeles. Das Kamerasystem aus zwei baugleichen Weltraumkameras, das unter Leitung des Max-Planck-Instituts für Sonnensystemforschung entwickelt wurde und betrieben wird, spielt dabei eine entscheidende Rolle. Es soll den Kleinplaneten nicht nur nach und nach mit einer Auflösung von bis zu 35 Metern kartieren, sondern auch die Topografie der Oberfläche darstellen sowie deren mineralogische Zusammensetzung ergründen.

Auf dem ersten aufgelösten Bild von Ceres, welches das Kamerasystem am 1. Dezember aus einer Entfernung von etwa 1,2 Millionen Kilometern aufgenommen hat, misst der Kleinplanet nur neun Pixel im Durchmesser. Das Bild hilft dem Kamerateam, ihr Instrument noch vor der Ankunft am Kleinplaneten im nächsten Jahr zu kalibrieren. Mitte Januar 2015 werden die Aufnahmen dann immer deutlicher. „Die schärfsten Bilder, die uns bisher von Ceres vorliegen, stammen vom Weltraumteleskop Hubble“, sagt Nathues. „Die Auflösung dieser Bilder müssten wir Ende Januar übertreffen. Von da an betreten wir Neuland.“

Nach einer kurzen Anflugphase wird Dawn im März 2015 in eine Umlaufbahn um den Kleinplanten einschwenken. In den folgenden Monaten wird sich der Abstand zwischen Raumsonde und Oberfläche auf nur 400 Kilometern verringern. Mehr als ein Jahr lang soll Dawn den eisigen Wasserspucker beobachten.

Die Dawn-Mission wird vom Jet Propulsion Laboratory (JPL) der amerikanischen Weltraumbehörde NASA geleitet. JPL ist eine Abteilung des California Institute of Technology in Pasadena. Die University of California in Los Angeles ist für den wissenschaftlichen Teil der Mission verantwortlich. Das Kamerasystem an Bord der Raumsonde wurde unter Leitung des Göttinger Max-Planck-Instituts für Sonnensystemforschung in Zusammenarbeit mit dem Institut für Planetenforschung des Deutschen Zentrums für Luft- und Raumfahrt (DLR) in Berlin und dem Institut für Datentechnik und Kommunikationsnetze in Braunschweig entwickelt und gebaut. Das Kamera-Projekt wird finanziell von der Max-Planck-Gesellschaft, dem DLR und NASA/JPL unterstützt.

Ansprechpartner

Dr. Birgit Krummheuer
Presse- und Öffentlichkeitsarbeit

Max-Planck-Institut für Sonnensystemforschung, Göttingen
Telefon: +49 551 384979-462

E-Mail: krummheuer@mps.mpg.de


Dr. Andreas Nathues
Max-Planck-Institut für Sonnensystemforschung, Göttingen
Telefon: +49 551 384979-433

E-Mail: nathues@mps.mpg.de

Dr. Birgit Krummheuer | Max-Planck-Institut für Sonnensystemforschung, Göttingen
Weitere Informationen:
http://www.mpg.de/8791149/dawn-ceres?filter_order=L&research_topic=

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Sterngeburt in den Winden supermassereicher Schwarzer Löcher
28.03.2017 | ESO Science Outreach Network - Haus der Astronomie

nachricht Das anwachsende Ende der Ordnung
27.03.2017 | Universität Konstanz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

Zweites Symposium 4SMARTS zeigt Potenziale aktiver, intelligenter und adaptiver Systeme

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Warum der Brennstoffzelle die Luft wegbleibt

28.03.2017 | Biowissenschaften Chemie

Chlamydien: Wie Bakterien das Ruder übernehmen

28.03.2017 | Biowissenschaften Chemie

Sterngeburt in den Winden supermassereicher Schwarzer Löcher

28.03.2017 | Physik Astronomie