Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Erster Blick auf eine neue Welt

08.12.2014

Die Raumsonde Dawn sendet Bild des Kleinplaneten Ceres zur Erde

Mehr als 413 Millionen Kilometer entfernt von der wärmenden Sonne, mitten im Asteroidengürtel zwischen den Umlaufbahnen von Mars und Jupiter, zieht ein seltsamer Körper seine Bahnen: Ceres, der größte Asteroid im Sonnensystem. Mit einem Durchmesser von etwa 950 Kilometern und nahezu kugelförmiger Gestalt gleicht er eher einem Planeten als einem Asteroiden. Im Frühjahr 2015 kommt die NASA-Raumsonde Dawn an dieser geheimnisvollen Welt an. Bereits jetzt – aus einer Entfernung von etwa 1,2 Millionen Kilometern – hat das Kamerasystem einen Blick auf das entfernte Ziel geworfen. Der Endspurt zu Ceres hat begonnen.


Ceres im Fokus: Ein Blick auf den Kleinplaneten, aufgenommen am 1. Dezember 2014 aus einer Entfernung von 1,2 Millionen Kilometern. Ceres ist der helle Fleck in der Bildmitte. Da Ceres deutlich heller ist als die Sterne im Hintergrund, hat das Kamerateam eine lange Belichtungszeit gewählt, um diese Sterne sichtbar zu machen. Die übertriebene Größe von Ceres, die daraus resultiert, wurde durch Überlagern eines kurzen Schnappschusses des Asteroiden korrigiert. Auf dem Ausschnitt unten links hat Ceres einen Durchmesser von gerade einmal neun Pixeln.

© NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

Die Raumsonde Dawn ist kein Neuling im Asteroidengürtel. Nach ihrem Start im September 2007 schwenkte sie am 16. Juli 2011 in eine Umlaufbahn um den Asteroiden Vesta ein. Mehr als ein Jahr lang untersuchte Dawn den etwa 530 Kilometer großen Körper und fand eine Welt von bizarrer Schönheit – mit unzähligen Kratern, tiefen Rillen und einem der höchsten Berge im Sonnensystem.

„Vesta ist eine steinige Welt. Ihr innerer Aufbau ähnelt dem der Erde“, sagt Andreas Nathues vom Göttinger Max-Planck-Institut für Sonnensystemforschung, der das Kamerateam von Dawn leitet. „Für den zweiten Teil der Mission am Kleinplaneten Ceres müssen wir uns nun auf ganz andere Bedingungen einstellen“, fügt er hinzu.

Obwohl Vesta und Ceres beide im Asteroidengürtel zuhause sind, unterscheiden sie sich deutlich. Wenn auch viel kleiner, gleicht Vesta den inneren Planeten Merkur, Venus, Erde und Mars. Manche Forscher bezeichnen den Körper sogar als fünften Vertreter dieser Gruppe. Ceres hingegen erinnert eher an die eisigen Monde der äußeren Planeten Jupiter und Saturn: tiefgefroren und wasserhaltig.

Zudem besitzt der Kleinplanet möglicherweise eine Atmosphäre aus Wasserdampf, die aus unterirdischen Reservoirs gespeist wird. Messungen mit dem Weltraumteleskop Herschel deuten jedenfalls darauf hin, dass Ceres gelegentlich Wasserdampf ins All spuckt – ähnlich wie der Saturnmond Enceladus, nur in deutlich geringerem Ausmaß.

„Die Mission Dawn wird uns helfen zu verstehen, wie sich solche wasserreichen Asteroiden gebildet haben und wie sie bis heute aktiv sein können“, sagt Missionsleiter Chris Russell von der University of California in Los Angeles. Das Kamerasystem aus zwei baugleichen Weltraumkameras, das unter Leitung des Max-Planck-Instituts für Sonnensystemforschung entwickelt wurde und betrieben wird, spielt dabei eine entscheidende Rolle. Es soll den Kleinplaneten nicht nur nach und nach mit einer Auflösung von bis zu 35 Metern kartieren, sondern auch die Topografie der Oberfläche darstellen sowie deren mineralogische Zusammensetzung ergründen.

Auf dem ersten aufgelösten Bild von Ceres, welches das Kamerasystem am 1. Dezember aus einer Entfernung von etwa 1,2 Millionen Kilometern aufgenommen hat, misst der Kleinplanet nur neun Pixel im Durchmesser. Das Bild hilft dem Kamerateam, ihr Instrument noch vor der Ankunft am Kleinplaneten im nächsten Jahr zu kalibrieren. Mitte Januar 2015 werden die Aufnahmen dann immer deutlicher. „Die schärfsten Bilder, die uns bisher von Ceres vorliegen, stammen vom Weltraumteleskop Hubble“, sagt Nathues. „Die Auflösung dieser Bilder müssten wir Ende Januar übertreffen. Von da an betreten wir Neuland.“

Nach einer kurzen Anflugphase wird Dawn im März 2015 in eine Umlaufbahn um den Kleinplanten einschwenken. In den folgenden Monaten wird sich der Abstand zwischen Raumsonde und Oberfläche auf nur 400 Kilometern verringern. Mehr als ein Jahr lang soll Dawn den eisigen Wasserspucker beobachten.

Die Dawn-Mission wird vom Jet Propulsion Laboratory (JPL) der amerikanischen Weltraumbehörde NASA geleitet. JPL ist eine Abteilung des California Institute of Technology in Pasadena. Die University of California in Los Angeles ist für den wissenschaftlichen Teil der Mission verantwortlich. Das Kamerasystem an Bord der Raumsonde wurde unter Leitung des Göttinger Max-Planck-Instituts für Sonnensystemforschung in Zusammenarbeit mit dem Institut für Planetenforschung des Deutschen Zentrums für Luft- und Raumfahrt (DLR) in Berlin und dem Institut für Datentechnik und Kommunikationsnetze in Braunschweig entwickelt und gebaut. Das Kamera-Projekt wird finanziell von der Max-Planck-Gesellschaft, dem DLR und NASA/JPL unterstützt.

Ansprechpartner

Dr. Birgit Krummheuer
Presse- und Öffentlichkeitsarbeit

Max-Planck-Institut für Sonnensystemforschung, Göttingen
Telefon: +49 551 384979-462

E-Mail: krummheuer@mps.mpg.de


Dr. Andreas Nathues
Max-Planck-Institut für Sonnensystemforschung, Göttingen
Telefon: +49 551 384979-433

E-Mail: nathues@mps.mpg.de

Dr. Birgit Krummheuer | Max-Planck-Institut für Sonnensystemforschung, Göttingen
Weitere Informationen:
http://www.mpg.de/8791149/dawn-ceres?filter_order=L&research_topic=

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Erforschung von Elementarteilchen in Materialien
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Vermeintlich junger Stern entpuppt sich als galaktischer Greis
16.01.2017 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Erforschung von Elementarteilchen in Materialien

Laseranregung von Semimetallen ermöglicht die Erzeugung neuartiger Quasiteilchen in Festkörpersystemen sowie ultraschnelle Schaltung zwischen verschiedenen Zuständen.

Die Untersuchung der Eigenschaften fundamentaler Teilchen in Festkörpersystemen ist ein vielversprechender Ansatz für die Quantenfeldtheorie. Quasiteilchen...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Mit solaren Gebäudehüllen Architektur gestalten

Solarthermie ist in der breiten Öffentlichkeit derzeit durch dunkelblaue, rechteckige Kollektoren auf Hausdächern besetzt. Für ästhetisch hochwertige Architektur werden Technologien benötigt, die dem Architekten mehr Gestaltungsspielraum für Niedrigst- und Plusenergiegebäude geben. Im Projekt »ArKol« entwickeln Forscher des Fraunhofer ISE gemeinsam mit Partnern aktuell zwei Fassadenkollektoren für solare Wärmeerzeugung, die ein hohes Maß an Designflexibilität erlauben: einen Streifenkollektor für opake sowie eine solarthermische Jalousie für transparente Fassadenanteile. Der aktuelle Stand der beiden Entwicklungen wird auf der BAU 2017 vorgestellt.

Im Projekt »ArKol – Entwicklung von architektonisch hoch integrierten Fassadekollektoren mit Heat Pipes« entwickelt das Fraunhofer ISE gemeinsam mit Partnern...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungen

Über intelligente IT-Systeme und große Datenberge

17.01.2017 | Veranstaltungen

Aquakulturen und Fangquoten – was hilft gegen Überfischung?

16.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungsnachrichten

Intelligente Haustechnik hört auf „LISTEN“

17.01.2017 | Architektur Bauwesen

Satellitengestützte Lasermesstechnik gegen den Klimawandel

17.01.2017 | Maschinenbau