Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die ersten Sonnenstrahlen für SUNRISE

20.05.2009
Das Sonnenobservatorium, das unter Leitung des Max-Planck-Instituts für Sonnensystemforschung entsteht, bereitet sich auf den Start vor.

Das Sonnenobservatorium SUNRISE hat zum ersten Mal die Sonne erblickt. Wenige Wochen vor ihrem Start hat die Mission, die das Max-Planck-Institut für Sonnensystemforschung (MPS) in Katlenburg-Lindau leitet, damit einen wichtigen Meilenstein erreicht.


Die weiße Strebenkonstruktion der Gondel beherbergt das Teleskop und weitere wissenschaftliche Instrumente. Unter einem Winkel von etwa 40 Grad blickt SUNRISE zum ersten Mal in die Sonne. Foto: MPS

Anfang Juni soll das Sonnenobservatorium von der europäischen Weltraumbasis ESRANGE im nordschwedischen Kiruna auf seine etwa fünftägige Reise um den Nordpol aufbrechen. Getragen von einem riesigen Helium-Ballon wird SUNRISE unser Zentralgestirn aus 37 Kilometern Höhe betrachten und dabei die magnetischen Strukturen auf der Sonnenoberfläche mit einer Genauigkeit untersuchen, die nie zuvor erreicht wurde.

Die Mission SUNRISE ist einzigartig. Denn das Sonnenobservatorium, an dem ein internationales Team von Wissenschaftlern seit sechs Jahren arbeitet, trägt das größte Sonnenteleskop, das jemals die Erdoberfläche verlassen hat. Ein Helium-Ballon, der sich in der oberen Erdatmosphäre auf einen Durchmesser von ungefähr 130 Metern aufbläht, trägt das zwei Tonnen schwere Instrument auf eine Höhe von etwa 37 Kilometern. Dort angekommen hat SUNRISE mehr als 95 Prozent der Erdatmosphäre hinter sich gelassen - und damit ihren störenden Einfluss auf die Sehschärfe des Teleskops. Die Wissenschaftler erwaten deshalb, das SUNRISE die fein strukturierte Oberfläche der Sonne und die Verteilung der Magnetfelder mit einer Auflösung von bis zu 35 Kilometern sichtbar machen wird. Das ist so, als könnte man aus Hannover eine Euro-Münze im etwa 100 Kilometer entfernten Katlenburg-Lindau erkennen.

Auf diese Meisterleistung bereitet sich das SUNRISE-Team in Kiruna seit Anfang April vor. In den vergangenen Wochen konnten die Wissenschaftler das Teleskop mit den weiteren wissenschaftlichen Instrumenten verbinden, die sein Licht nutzen werden. Zudem ist die Nutzlast bereits in die Gondel integriert, die später bei der Flugvorbereitung am Ballon befestigt wird. Nun ist dem Team ein weiterer entscheidender Schritt gelungen: Durch die Tür der Halle, in der die Vorbereitungen stattfinden, hat SUNRISE zum ersten Mal ungeschützt in die Sonne geblickt. "Auf diesen Moment haben wir etwa sechs Jahre hingearbeitet", freut sich Projektleiter Peter Barthol vom MPS.

Einen etwas vorsichtigeren Blick auf die Sonne hatten die Wissenschaftler bereits einige Tage zuvor gewagt. Eine Schutzfolie verhinderte, dass das gesamte Sonnenlicht das Innere des Teleskops erreicht. "Im Teleskop wird das Sonnenlicht wie in einem Brennglas gebündelt. Unser Brennglas hat einen Durchmesser von einem Meter. Im Brennpunkt entstehen deshalb sehr hohe Leistungen auf kleinster Fläche", erklärt Barthol.

Zwar ist SUNRISE mit zahlreichen Mechanismen ausgestattet, die diese Hitze abführen. Doch wenn das Teleskop nicht genau auf die Sonne ausgerichtet ist und das Licht deshalb schief einfällt, können diese nicht hundertprozentig greifen. Komponenten des Teleskops könnten dann buchstäblich in Rauch aufgehen. Entscheidend ist deshalb, dass sich das Sonnenobservatorium später im Flug selbstständig und präzise nach der Sonne orientiert. Am Boden funktioniert dies nun zuverlässig. Dem ersten ungeschützten Blick in die Sonne, dem so genannten "First Light", stand somit nichts mehr im Wege. In den nächsten Tagen können die Forscher ihre Instrumente nun erstmals unter realistischen Bedingungen kalibrieren und prüfen.

Die Mission SUNRISE wird etwa fünf Tage dauern. Auf seiner Reiseflughöhe angekommen wird das Sonnenobservatorium von Polarwinden erfasst und über den Nordatlantik, Grönland und Kanada westwärts um den Nordpol getragen. Im Norden Kanadas soll SUNRISE dann an einem Fallschirm sanft landen. Da der Flug um die Sommersonnenwende am Polarkreis stattfindet, kann das Sonnenobservatorium unser Zentralgestrin während des Fluges ununterbrochen beobachten. Neben dem Teleskop trägt SUNRISE weitere wissenschaftliche Instrumente an Bord, die die Magnetfelder der Sonne sichtbar machen, sowie ausgeklügelte Systeme, die in luftiger Höhe das Teleskop optimal justiert halten und das Bild stabilisieren.

Neben dem Max-Planck-Institut für Sonnensystemforschung sind an der Mission zahlreiche weitere Forschungseinrichtungen beteiligt: das Kiepenheuer-Institut für Sonnenphysik in Freiburg, das High Altitude Observatory in Boulder (Colorado), das Instituto de Astrofisica de Canarias auf Teneriffa, das Lockheed-Martin Solar and Astrophysics Laboratory in Palo Alto (Kalifornien) und die Columbia Scientific Ballooning Facility der NASA.

Das SUNRISE-Projekt wird gefördert vom Bundesministerium für Wirtschaft und vom Deutschen Zentrum für Luft- und Raumfahrt (Forschungskennzeichen 50 OU 0401).

Dr. Birgit Krummheuer | Max-Planck-Institut
Weitere Informationen:
http://www.mps.mpg.de/de/projekte/sunrise/
http://www.mps.mpg.de/projects/sunrise/scienceblog/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Eine Extra-Sekunde zum neuen Jahr
08.12.2016 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht Heimcomputer entdecken rekordverdächtiges Pulsar-Neutronenstern-System
08.12.2016 | Max-Planck-Institut für Radioastronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einzelne Proteine bei der Arbeit beobachten

08.12.2016 | Biowissenschaften Chemie

Intelligente Filter für innovative Leichtbaukonstruktionen

08.12.2016 | Messenachrichten

Seminar: Ströme und Spannungen bedarfsgerecht schalten!

08.12.2016 | Seminare Workshops