Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Erste Resultate bei der Suche nach Neutrino-Eigenschaften

04.09.2012
Das internationale Grossprojekt «EXO-200» soll einen extrem seltenen Teilchenzerfall beobachten, um herauszufinden, ob Neutrinos sich anders verhalten als andere Elementarteilchen. Nun liegen die ersten Ergebnisse vor, die ein neues Licht auf die Masse und andere Eigenschaften der rätselhaften Neutrinos werfen. Am Projekt sind Berner Teilchenphysiker massgeblich beteiligt.

Neutrinos spielten eine zentrale Rolle bei der Entstehung unseres Universums. Sie sind also bereits seit 13 Milliarden Jahren unterwegs und transportieren bei der Explosion von Sternen 99 Prozent der dabei freiwerdenden Energie ab. Kein Wunder, wollen Teilchenphysikerinnen und -physiker die Eigenschaften dieser Elementarteilchen ergründen. Eine dieser Eigenschaften, so wurde in der Forschung bisher vermutet, ist, dass Neutrinos sich anders verhalten als andere Teilchen im Quantenbereich.


Der Kryostat – das Kühlgerät – enthält den Detektor in seinem Inneren und hält diesen trotz Wüstentemperatur auf einer Betriebstemperatur von -105° Grad. Der Kryostat wurde an der Universität Bern zusammen mit der Fachhochschule Yverdon gebaut. Bild: EXO Collaboration

Könnte ein Experiment dies nachweisen, müsste das Standard-Modell der Physik umgeschrieben werden. Seit Jahrzehnten wird versucht, diesen Nachweis zu erbringen. Nun liegen Ergebnisse vor, die in eine andere Richtung weisen: Dank hochpräziser Messungen in einem bisher unerforschten Parameterbereich konnte eine internationale Forschergruppe mit Beteiligung des Albert Einstein Centers (AEC) und des Laboratoriums für Hochenergiephysik (LHEP) der Universität Bern nachweisen, dass sich Neutrinos gleich verhalten wie andere Elementarteilchen. Zugleich steht nun fest, dass Neutrinos über eine winzige Masse verfügen – verglichen etwa zu anderen Teilchen wie Elektronen. Die Ergebnisse wurden im Journal «Physical Review Letters» publiziert.

Neutrinos sind extrem leicht

Das «Enriched Xenon Observatory 200» (EXO-200) ist ein internationales Experiment mit über 80 Forschenden, das mit der bisher höchsten Genauigkeit den sogenannten «neutrinolosen doppelten Beta-Zerfall» beobachten sollte. Gemäss Theorie sollten sich bei diesem radioaktiven Prozess je ein Neutrino und ein Antineutrino gegenseitig auslöschen. Hätte dies beobachtet werden können, hätten Neutrinos eine andere Quantenstruktur als andere Elementarteilchen. Der Detektor von EXO-200 kann Zerfalls-Ereignisse nachweisen, die ungefähr einmal in 1015 Jahren auftreten – also in einer Zeitspanne, die 1000 Billionen mal dem Alter unseres Universums entspricht. Diesen speziellen Zerfall, den neutrinolosen doppelten Beta-Zerfall, hat der hochempfindliche Detektor aber nicht nachgewiesen.

«Damit wird der Parameter-Raum für dieses Ereignis stark eingeschränkt», sagt Jean-Luc Vuilleumier vom LHEP der Universität Bern. Insbesondere bedeutet dies, dass die Masse von Neutrinos sehr leicht sein muss, nämlich zwischen einem 140-Tausendstel bis 380-Tausendstel eines Elektronenvolts – der Masseneinheit, die in der Teilchenphysik verwendet wird. Im Vergleich dazu wirkt das winzige Elektron geradezu schwer: es weist eine Masse von etwa 500'000 Elektronenvolt auf.

Bern übernimmt Neutrino-Nachtschichten in den USA
Die Berner Forschenden sind massgeblich für die hohe Präzision und Qualität der Berechnungen aus dem Detektor verantwortlich, der sich in einem Tiefenlabor in der Wüste von New Mexico (USA) befindet: «Wir haben das Kühlgerät, in dem der Detektor eingelassen ist, zusammen mit der Fachhochschule Yverdon gebaut, die radiochemisch reinen Materialien für den Bau des gesamten Detektors ausgewählt, diesen im Tiefenlabor in der Wüste mitgebaut und nehmen an der gesamten Datenanalyse des Experiments teil», zählt Vuilleumier auf. Letzteres bedeutet auch die Überwachung des Betriebs und der Datenaufnahme des Detektors – dank einem Kontrollraum in Bern.

«Von hier aus können wir auch die meisten Nachtschichten in New Mexico durchführen», sagt Vuillemier. Das EXO-200-Experiment soll in den nächsten Jahren weiterlaufen und könnte – so hoffen die Forschenden – dereinst zu einem noch viel grösseren Detektor ausgebaut werden, um nach den kaum wahrnehmbaren physikalischen Prozessen zu suchen, die bereits theoretisch vorausgesagt wurden.

Bibliographische Angaben:
M. Auger et al. (EXO Collaboration): Search for Neutrinoless Double-Beta Decay in1136Xe with EXO-200, Physical Review Letters, 2012, 19. Juli, 109, 3, 032505(6), doi:10.1103/PhysRevLett.109.032505
Kontaktperson: Prof. Dr. Jean-Luc Vuilleumier, Laboratorium für Hochenergiephysik der Universität Bern, Sidlerstrasse 5, 3012 Bern, Tel. +41 31 631 40 66 / +41 79 299 65 22

jean-luc.vuilleumier@lhep.unibe.ch

Nathalie Matter | Universität Bern
Weitere Informationen:
http://www.unibe.ch

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Freie Elektronen in Sonnen-Protuberanzen untersucht
25.07.2017 | Georg-August-Universität Göttingen

nachricht Magnetische Quantenobjekte im "Nano-Eierkarton": PhysikerInnen bauen künstliche Fallen für Fluxonen
25.07.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Navigationssystem der Hirnzellen entschlüsselt

Das menschliche Gehirn besteht aus etwa hundert Milliarden Nervenzellen. Informationen zwischen ihnen werden über ein komplexes Netzwerk aus Nervenfasern übermittelt. Verdrahtet werden die meisten dieser Verbindungen vor der Geburt nach einem genetischen Bauplan, also ohne dass äußere Einflüsse eine Rolle spielen. Mehr darüber, wie das Navigationssystem funktioniert, das die Axone beim Wachstum leitet, haben jetzt Forscher des Karlsruher Instituts für Technologie (KIT) herausgefunden. Das berichten sie im Fachmagazin eLife.

Die Gesamtlänge des Nervenfasernetzes im Gehirn beträgt etwa 500.000 Kilometer, mehr als die Entfernung zwischen Erde und Mond. Damit es beim Verdrahten der...

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Breitbandlichtquellen mit flüssigem Kern

Jenaer Forschern ist es gelungen breitbandiges Laserlicht im mittleren Infrarotbereich mit Hilfe von flüssigkeitsgefüllten optischen Fasern zu erzeugen. Mit den Fasern lieferten sie zudem experimentelle Beweise für eine neue Dynamik von Solitonen – zeitlich und spektral stabile Lichtwellen – die aufgrund der besonderen Eigenschaften des Flüssigkerns entsteht. Die Ergebnisse der Arbeiten publizierte das Jenaer Wissenschaftler-Team vom Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT), dem Fraunhofer-Insitut für Angewandte Optik und Feinmechanik, der Friedrich-Schiller-Universität Jena und des Helmholtz-Insituts im renommierten Fachblatt Nature Communications.

Aus einem ultraschnellen intensiven Laserpuls, den sie in die Faser einkoppeln, erzeugen die Wissenschaftler ein, für das menschliche Auge nicht sichtbares,...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. Uelzener Forum: Demografischer Wandel und Digitalisierung

26.07.2017 | Veranstaltungen

Clash of Realities 2017: Anmeldung jetzt möglich. Internationale Konferenz an der TH Köln

26.07.2017 | Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Robuste Computer für's Auto

26.07.2017 | Seminare Workshops

Läuft wie am Schnürchen!

26.07.2017 | Seminare Workshops

Leicht ist manchmal ganz schön schwer!

26.07.2017 | Seminare Workshops