Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Erste Resultate bei der Suche nach Neutrino-Eigenschaften

04.09.2012
Das internationale Grossprojekt «EXO-200» soll einen extrem seltenen Teilchenzerfall beobachten, um herauszufinden, ob Neutrinos sich anders verhalten als andere Elementarteilchen. Nun liegen die ersten Ergebnisse vor, die ein neues Licht auf die Masse und andere Eigenschaften der rätselhaften Neutrinos werfen. Am Projekt sind Berner Teilchenphysiker massgeblich beteiligt.

Neutrinos spielten eine zentrale Rolle bei der Entstehung unseres Universums. Sie sind also bereits seit 13 Milliarden Jahren unterwegs und transportieren bei der Explosion von Sternen 99 Prozent der dabei freiwerdenden Energie ab. Kein Wunder, wollen Teilchenphysikerinnen und -physiker die Eigenschaften dieser Elementarteilchen ergründen. Eine dieser Eigenschaften, so wurde in der Forschung bisher vermutet, ist, dass Neutrinos sich anders verhalten als andere Teilchen im Quantenbereich.


Der Kryostat – das Kühlgerät – enthält den Detektor in seinem Inneren und hält diesen trotz Wüstentemperatur auf einer Betriebstemperatur von -105° Grad. Der Kryostat wurde an der Universität Bern zusammen mit der Fachhochschule Yverdon gebaut. Bild: EXO Collaboration

Könnte ein Experiment dies nachweisen, müsste das Standard-Modell der Physik umgeschrieben werden. Seit Jahrzehnten wird versucht, diesen Nachweis zu erbringen. Nun liegen Ergebnisse vor, die in eine andere Richtung weisen: Dank hochpräziser Messungen in einem bisher unerforschten Parameterbereich konnte eine internationale Forschergruppe mit Beteiligung des Albert Einstein Centers (AEC) und des Laboratoriums für Hochenergiephysik (LHEP) der Universität Bern nachweisen, dass sich Neutrinos gleich verhalten wie andere Elementarteilchen. Zugleich steht nun fest, dass Neutrinos über eine winzige Masse verfügen – verglichen etwa zu anderen Teilchen wie Elektronen. Die Ergebnisse wurden im Journal «Physical Review Letters» publiziert.

Neutrinos sind extrem leicht

Das «Enriched Xenon Observatory 200» (EXO-200) ist ein internationales Experiment mit über 80 Forschenden, das mit der bisher höchsten Genauigkeit den sogenannten «neutrinolosen doppelten Beta-Zerfall» beobachten sollte. Gemäss Theorie sollten sich bei diesem radioaktiven Prozess je ein Neutrino und ein Antineutrino gegenseitig auslöschen. Hätte dies beobachtet werden können, hätten Neutrinos eine andere Quantenstruktur als andere Elementarteilchen. Der Detektor von EXO-200 kann Zerfalls-Ereignisse nachweisen, die ungefähr einmal in 1015 Jahren auftreten – also in einer Zeitspanne, die 1000 Billionen mal dem Alter unseres Universums entspricht. Diesen speziellen Zerfall, den neutrinolosen doppelten Beta-Zerfall, hat der hochempfindliche Detektor aber nicht nachgewiesen.

«Damit wird der Parameter-Raum für dieses Ereignis stark eingeschränkt», sagt Jean-Luc Vuilleumier vom LHEP der Universität Bern. Insbesondere bedeutet dies, dass die Masse von Neutrinos sehr leicht sein muss, nämlich zwischen einem 140-Tausendstel bis 380-Tausendstel eines Elektronenvolts – der Masseneinheit, die in der Teilchenphysik verwendet wird. Im Vergleich dazu wirkt das winzige Elektron geradezu schwer: es weist eine Masse von etwa 500'000 Elektronenvolt auf.

Bern übernimmt Neutrino-Nachtschichten in den USA
Die Berner Forschenden sind massgeblich für die hohe Präzision und Qualität der Berechnungen aus dem Detektor verantwortlich, der sich in einem Tiefenlabor in der Wüste von New Mexico (USA) befindet: «Wir haben das Kühlgerät, in dem der Detektor eingelassen ist, zusammen mit der Fachhochschule Yverdon gebaut, die radiochemisch reinen Materialien für den Bau des gesamten Detektors ausgewählt, diesen im Tiefenlabor in der Wüste mitgebaut und nehmen an der gesamten Datenanalyse des Experiments teil», zählt Vuilleumier auf. Letzteres bedeutet auch die Überwachung des Betriebs und der Datenaufnahme des Detektors – dank einem Kontrollraum in Bern.

«Von hier aus können wir auch die meisten Nachtschichten in New Mexico durchführen», sagt Vuillemier. Das EXO-200-Experiment soll in den nächsten Jahren weiterlaufen und könnte – so hoffen die Forschenden – dereinst zu einem noch viel grösseren Detektor ausgebaut werden, um nach den kaum wahrnehmbaren physikalischen Prozessen zu suchen, die bereits theoretisch vorausgesagt wurden.

Bibliographische Angaben:
M. Auger et al. (EXO Collaboration): Search for Neutrinoless Double-Beta Decay in1136Xe with EXO-200, Physical Review Letters, 2012, 19. Juli, 109, 3, 032505(6), doi:10.1103/PhysRevLett.109.032505
Kontaktperson: Prof. Dr. Jean-Luc Vuilleumier, Laboratorium für Hochenergiephysik der Universität Bern, Sidlerstrasse 5, 3012 Bern, Tel. +41 31 631 40 66 / +41 79 299 65 22

jean-luc.vuilleumier@lhep.unibe.ch

Nathalie Matter | Universität Bern
Weitere Informationen:
http://www.unibe.ch

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Proteintransport - Stau in der Zelle
24.03.2017 | Ludwig-Maximilians-Universität München

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise