Erste Kollision von Elektronen und Positronen am japanischen Beschleuniger SuperKEKB

Ansicht des Belle II-Detektors mit seinen 7 Subsystemen (http://belle2.kek.jp/detector.html). Um den Mittelpunkt sind die Spurrekonstruktionsdetektoren (PXD, SVD und CDC) angeordnet, an die sich ein Cherenkovdetektor (TOP), das elektromagnetische Kalorimeter (ECL) und der Myondetektor (KLM) anschließen. In Vorwärtsrichtung befindet sich ein zusätzlicher Cherenkovdetektor (ARICH). Abb./©: Rey.Hori/KEK

In der Nacht zum 26. April um 0:38 Uhr japanischer Zeit (MEZ+8) ist es zum ersten Mal gelungen, im SuperKEKB-Teilchenbeschleuniger am Forschungszentrum KEK in Tsukuba (Japan) beschleunigte und gespeicherte Elektronen und Positronen zur Kollision zu bringen.

Der am Wechselwirkungspunkt installierte Belle II-Detektor zeichnete dabei erste Ereignisse durch die Annihilation von Elektronen und Positronen (Materie-Antimaterie-Vernichtung) aus den beiden Strahlen auf, bei denen neue Teilchen, unter anderem auch Bottom/Anti-Bottom-Quark-Paare, erzeugt wurden.

Zudem ließen sich andere hadronische und Bhabha-Streuereignisse beobachten. Dies waren die ersten Elektron-Positron-Kollisionen am KEK Teilchenbeschleunigerlabor seit acht Jahren, nachdem der Vorgängerbeschleuniger KEKB 2010 abgeschaltet worden war.

Der Belle II-Detektor am SuperKEKB-Beschleuniger wurde von einer internationalen Kollaboration mit mehr als 750 Wissenschaftlern aus 25 Ländern geplant und gebaut. Deutsche Wissenschaftler zeichnen dabei unter anderem verantwortlich für die Entwicklung und Bau des Pixeldetektors zur präzisen Messung von Teilchenspuren in der unmittelbaren Wechselwirkungszone.

Die Gruppe von Prof. Dr. Concettina Sfienti an der Johannes Gutenberg-Universität Mainz (JGU) hat dieses Vorhaben mit der Entwicklung und Programmierung spezieller Elektronik zur Überwachung des Pixeldetektors unterstützt. Verglichen mit seinem Vorgänger, dem Belle Detektor, hat Belle II deutlich verbesserte Eigenschaften und kann Ereignisse mit einer viel höheren Rate, die durch die 40-fach höhere Luminosität des SuperKEKB-Beschleunigers erzeugt wird, detektieren und rekonstruieren. Etwa 50 Milliarden Ereignisse mit B/Anti-B-Meson-Paaren sollen in den kommenden zehn Betriebsjahren aufgezeichnet werden – das entspricht dem 50-fachen Datensatz des vorherigen KEKB/Belle Experiments.

SuperKEKB, zusammen mit dem Belle II-Detektor, ist eine Anlage, die zur Suche nach Neuer Physik jenseits des Standardmodells über die Messung seltener Zerfälle von Elementarteilchen, wie z.B. Bottom- und Charm-Quarks oder Tau-Leptonen, gebaut wurde. Belle II wird dabei das Problem angehen, Beweise für die Existenz neuer unbekannter Teilchen zu finden, die eine mögliche Erklärung für das Vorherrschen von Materie im Vergleich zu Antimaterie liefern und weitere offene fundamentale Fragen zum Verständnis des Universums beantworten können.

Im letzten Monat begann am KEK eine neue Stufe im Betrieb des SuperKEKB-Elektron-Positron-Beschleunigers: mit einem neuen Positron-Dämpfungsring, einem außerordentlich komplexen System aus supraleitenden Fokussiermagneten, und dem Belle II-Detektor am Wechselwirkungspunkt.

Ein Elektronenstrahl wurde zum ersten Mal am 21. März erfolgreich im Hochenergie-Ring beschleunigt und gespeichert. Am 31. März folgte dann der Positronenstrahl im Niederenergie-Ring. In den folgenden Wochen ist das abschließende Justieren des Beschleunigers zur Vorbereitung der Kollision der beiden Teilchenstrahlen im Mittelpunkt des Belle II-Detektors durchgeführt worden.

Im Unterschied zum Large Hadron Collider (LHC) am Forschungszentrum CERN in Genf (Schweiz), dem Protonenbeschleuniger, der die weltweit höchsten Energien erreicht, ist SuperKEKB/Belle II entworfen worden, um die weltweit höchste Luminosität zu erzielen.

Abbildungen:
http://www.phmi.uni-mainz.de/Illustrationen/BelleII-Detektor.png
Ansicht des Belle II-Detektors mit seinen 7 Subsystemen (http://belle2.kek.jp/detector.html). Um den Mittelpunkt sind die Spurrekonstruktionsdetektoren (PXD, SVD und CDC) angeordnet, an die sich ein Cherenkovdetektor (TOP), das elektromagnetische Kalorimeter (ECL) und der Myondetektor (KLM) anschließen. In Vorwärtsrichtung befindet sich ein zusätzlicher Cherenkovdetektor (ARICH).
Abb./©: Rey.Hori/KEK

http://www.phmi.uni-mainz.de/Illustrationen/BelleII-Detektor_hadronischesEreigni…
Ansicht eines online rekonstruierten hadronischen Ereignisses im Belle II-Detektor. Schwere Teilchen, die bei der Kollision von Elektronen und Positronen entstehen, zerfallen in leichtere Teilchen. Dargestellt sind die Signale der Subdetektoren sowie die daraus rekonstruierten Teilchenspuren.
Abb./©: KEK

Weitere Informationen:
Univ.-Prof. Dr. Concettina Sfienti
Institut für Kernphysik
Johannes Gutenberg-Universität Mainz (JGU)
55099 Mainz
Tel. +49 6131 39-25841
E-Mail: sfienti@uni-mainz.de
http://www.concettinasfienti.com/

Links:
https://www.kek.jp/en/index.html (Forschungszentrum KEK – High Energy Accelerator Research Organization (KEK))
http://belle2.jp/ (Belle II-Experiment am Forschungszentrum KEK)
https://www.kek.jp/en/newsroom/2018/04/26/0700/ („Electrons and Positrons Collide for the first time in the SuperKEKB Accelerator“ – Pressemitteilung des Forschungszentrums KEK zur ersten Kollision, 26. April 2018)
http://www.phmi.uni-mainz.de/10361.php („Erste Teilchenumläufe am Beschleuniger SuperKEKB“ – Pressemitteilung vom 15. März 2016)
http://www.kek.jp/en/NewsRoom/Release/20160302163000/ (Pressemitteilung des Forschungszentrums KEK zu den ersten Teilchenumläufen an SuperKEKB vom 2. März 2016)

Media Contact

Petra Giegerich idw - Informationsdienst Wissenschaft

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Ideen für die Zukunft

TU Berlin präsentiert sich vom 22. bis 26. April 2024 mit neun Projekten auf der Hannover Messe 2024. Die HANNOVER MESSE gilt als die Weltleitmesse der Industrie. Ihr diesjähriger Schwerpunkt…

Peptide auf interstellarem Eis

Dass einfache Peptide auf kosmischen Staubkörnern entstehen können, wurde vom Forschungsteam um Dr. Serge Krasnokutski vom Astrophysikalischen Labor des Max-Planck-Instituts für Astronomie an der Universität Jena bereits gezeigt. Bisher ging…

Wasserstoff-Produktion in der heimischen Garage

Forschungsteam der Frankfurt UAS entwickelt Prototyp für Privathaushalte: Förderzusage vom Land Hessen für 2. Projektphase. Wasserstoff als Energieträger der Zukunft ist nicht frei verfügbar, sondern muss aufwendig hergestellt werden. Das…

Partner & Förderer