Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Erste Elektronen im European XFEL beschleunigt

22.12.2015

Ein wichtiger Teil des Röntgenlasers European XFEL hat den Betrieb aufgenommen: Der sogenannte Injektor, das 45 Meter lange vorderste Teilstück des supraleitenden Teilchenbeschleunigers, hat die ersten Elektronen beschleunigt, die dabei annähernd Lichtgeschwindigkeit erreichten. Die Aufnahme des Injektortestbetriebs markiert einen wichtigen Meilenstein auf dem Weg zur Fertigstellung der Anlage.

Der Röntgenlaser European XFEL ist eine internationale Forschungseinrichtung in der Metropolregion Hamburg, die einzigartige Röntgenblitze erzeugt, mit denen Forscher aus aller Welt völlig neue Einblicke in den Nanokosmos gewinnen können.


Blick in den Hauptbeschleunigertunnel des European XFEL, in dem 100 supraleitende Beschleunigermodule montiert werden

Dirk Nölle / DESY


Blick in den Injektorbereich des European XFEL. Die gelbe Röhre ist das erste supraleitende Beschleunigermodul

Dirk Nölle / DESY

Die Anlage besteht aus einem zwei Kilometer langen supraleitenden Linearbeschleuniger für Elektronen, an den sich eine Serie hochpräziser Magnetstrukturen anschließt, in denen die extrem kurzen und hellen Röntgenblitze erzeugt werden.

Der Injektor auf dem DESY-Campus in Hamburg-Bahrenfeld hat nun die erste Serie von hoch geladenen Elektronenpaketen erzeugt und beschleunigt. Die Elektronen benötigten für den 45 Meter langen Weg vom Anfang bis zum Ende des Injektors 0,15 Mikrosekunden (millionstel Sekunden) und erreichten dabei annähernd Lichtgeschwindigkeit.

Der Injektor formt die Elektronenpakete und beschleunigt sie. Im sich anschließenden zwei Kilometer langen Linearbeschleuniger, der derzeit noch montiert wird, erreichen die Elektronen immer höhere Energien. Diese Elektronen erzeugen dann in speziellen Magnetstrukturen die Lichtblitze für Experimente, von denen zahlreiche neue Impulse für die Forschung in den Bereichen Medizin, Energieproduktion und -speicherung, Materialforschung und vielen weiteren Gebieten erwartet werden.

DESY, Hauptgesellschafter und enger Partner von European XFEL, baut und betreibt den gesamten Linearbeschleuniger inklusive Injektor. Die Komponenten für den Injektor liefert und testet das aus 17 europäischen Forschungseinrichtungen bestehende Beschleuniger-Konsortium, das DESY koordiniert. Sachbeiträge stammen insbesondere von DESY und Instituten in Frankreich, Italien, Polen, Russland, Schweden, der Schweiz und Spanien.

„Alle Mitglieder des Beschleunigerkonsortiums haben zum Bau des Injektors beigetragen, und wir schätzen ihre Professionalität bei Planung, Bau und Installation der Komponenten“, erklärt Dr. Hans Weise, leitender Wissenschaftler bei DESY und Koordinator des Beschleunigerkonsortiums. „Die Beiträge ermöglichen es uns, beim Elektronenstrahl die hohe Qualität zu erreichen, die wir für den Betrieb des Freie-Elektronen-Röntgenlasers benötigen.“

Der Aufbau des Injektors ähnelt stark dem im Freie-Elektronen-Laser FLASH bei DESY, dem Prototyp des European XFEL, der 2005 als Nutzeranlage in Betrieb gegangen ist. Mehrere Milliarden Elektronen werden aus einer Elektrode aus Cäsiumtellurid herausgeschlagen, auf die ein ultravioletter Laserpuls trifft. Sie bilden ein Elektronenpaket, das durch Hochfrequenzwellen beschleunigt und durch intensive Magnetfelder zusammengehalten wird.

Die Beschleunigung erfolgt zunächst in einem normalleitenden, aus Kupfer gefertigten Hohlraumresonator, anschließend sorgen zwei supraleitende Beschleunigermodule für eine weitere Energieerhöhung. Diese beiden Module werden mit flüssigem Helium auf -271 Grad Celsius abgekühlt, damit die eingebauten Beschleunigungsstrukturen supraleitend werden und eine besonders effektive Beschleunigung ermöglichen. Diese erste Beschleunigungsstrecke ist essentiell für die Eigenschaften des Elektronenstrahls, damit er weiter hinten in der Anlage die Röntgenblitze erzeugen kann, mit denen Forscher Proben mit atomarer Auflösung untersuchen können.

In den nächsten Wochen und Monaten wird der Injektor intensiv getestet, während der übrige Linearbeschleuniger aufgebaut wird. Der nächste große Meilenstein ist die für Ende 2016 geplante Beschleunigung von Elektronen über 2,1 Kilometer bis zur Betriebstelle Osdorfer Born. Der Nutzerbetrieb soll 2017 beginnen.

„Die ersten Elektronen im Injektor sind ein Meilenstein für diese ambitionierte Entdeckungsmaschine – Glückwünsche an alle Physiker und Ingenieure, die die verschiedenen Komponenten mit großem Engagement gebaut und montiert haben“, betont der Vorsitzende des DESY-Direktoriums, Prof. Helmut Dosch. „Mehr als die Hälfte der supraleitenden Module des Hauptbeschleunigers sind bereits getestet und montiert, und ich bin ich sicher, dass wir bald auch hier mit der Inbetriebnahme beginnen können.“

„Ich freue mich, dass der Bau des Injektors erfolgreich abgeschlossen ist. Wir richten unser Augenmerk nun auf den restlichen Teil des Beschleunigers, um den Forschern die brillantesten Röntgenblitze der Welt zur Verfügung stellen zu können“, erklärt European XFEL-Geschäftsführer Prof. Massimo Altarelli. „Ich danke allen, die an der Konstruktion und Inbetriebnahme dieses Startpunkts für unsere Forschungseinrichtung beteiligt waren.“

Über European XFEL
In der Metropolregion Hamburg entsteht mit dem European XFEL eine Großforschungsanlage der Superlative: 27 000 Röntgenlaserblitze pro Sekunde und eine Leuchtstärke, die milliardenfach höher ist als die besten Röntgenstrahlungsquellen herkömmlicher Art, werden völlig neue Forschungsmöglichkeiten eröffnen. Forschergruppen aus aller Welt können an dem europäischen Röntgenlaser atomare Details von Viren und Zellen entschlüsseln, dreidimensionale Aufnahmen im Nanokosmos machen, chemische Reaktionen filmen und Vorgänge wie die im Inneren von Planeten untersuchen. Die European XFEL GmbH ist eine gemeinnützige Forschungsorganisation, die eng mit dem Forschungszentrum DESY und weiteren internationalen Institutionen zusammenarbeitet. Bei Beginn des Nutzerbetriebs im Jahr 2017 wird sie rund 280 Menschen beschäftigen. Mit Kosten von 1,22 Milliarden Euro (Preisniveau 2005) für Bau und Inbetriebnahme und einer Länge von 3,4 Kilometer ist European XFEL eines der größten und ambitioniertesten europäischen Forschungsprojekte. Derzeit beteiligen sich zwölf Länder: Dänemark, Deutschland, Frankreich, Griechenland, Italien, Polen, Russland, Schweden, die Schweiz, die Slowakei, Spanien und Ungarn.

Über DESY
Das Deutsche Elektronen-Synchrotron DESY ist das führende deutsche Beschleunigerzentrum und eines der führenden weltweit. DESY ist Mitglied der Helmholtz-Gemeinschaft und wird zu 90 Prozent vom BMBF und zu 10 Prozent von den Ländern Hamburg und Brandenburg finanziert. An seinen Standorten in Hamburg und Zeuthen bei Berlin entwickelt, baut und betreibt DESY große Teilchenbeschleuniger und erforscht damit die Struktur der Materie. Die Kombination von Forschung mit Photonen und Teilchenphysik bei DESY ist einmalig in Europa.

DESY-Pressekontakt
Dr. Thomas Zoufal
DESY-Pressesprecher
Tel. +49 40 8998-1666
presse@desy.de

European XFEL-Pressekontakt
Dr. Bernd Ebeling
XFEL-Pressesprecher
Tel. +49 40 8998-6921
press@xfel.eu

Weitere Informationen:

http://www.xfel.eu
http://www.desy.de

Dr. Frank Poppe | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Vorstoß ins Innere der Atome
23.02.2018 | Max-Planck-Institut für Quantenoptik

nachricht Quanten-Wiederkehr: Alles wird wieder wie früher
23.02.2018 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics