Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der erste dynamische Quantensimulator

15.03.2012
Ein internationales Wissenschaftlerteam hat experimentell die Überlegenheit von Quantensimulatoren verglichen mit modernen numerischen Methoden nachgewiesen.

Theoretischen Konzepten zufolge sollten „Quantensimulatoren“ Zugang zu komplexen physikalischen Prozessen ermöglichen, die mit den besten klassischen Algorithmen und verfügbaren Großrechnern nicht mehr zu erschließen sind. Eine Forschergruppe um Prof. Immanuel Bloch (Max-Planck-Institut für Quantenoptik in Garching und Ludwig-Maximilians-Universität München (LMU)) hat jetzt diese Überlegenheit experimentell nachgewiesen (Nature Physics, AOP, 19. Februar 2012, Doi:10.1038/nphys2232).



Abbildung: (links) Schematische Darstellung der Experimente: In einem optischen Gitter wird eine periodische Anordnung von Atomen präpariert. Unter dem Einfluss von Quantentunneln und abstoßender Wechselwirkung zwischen den Atomen ändert sich die anfängliche Dichteverteilung dynamisch in einem definierten Zeitraum t. (rechts) Der direkte Vergleich mit parameterfreien numerischen Simulationen verifiziert das für die Dynamik anzusetzende Modell für kurze Evolutionszeiten. Für längere Zeiten bricht die numerische Simulation (schwarze Linie) zusammen, während der experimentelle Quantensimulator (blaue Kreise) weiterhin Ergebnisse liefert. Grafik: MPQ

Die Wissenschaftler konnten erstmals dynamische Prozesse in einem Vielteilchensystem aus stark korrelierten ultrakalten Atomen in einem optischen Gitter verfolgen. Insbesondere konnten sie dabei Erkenntnisse über die Relaxationsvorgänge in einem isolierten System gewinnen, das anfänglich weit von seinem Gleichgewichtszustand entfernt ist. Auf kurzen Zeitskalen wurden die Messungen hervorragend von numerischen Rechnungen reproduziert, was die Eignung des Systems als Quantensimulator untermauert.

Das System liefert jedoch auch für längere Zeiträume, die für klassische Methoden nicht mehr zugänglich sind, aussagekräftige Ergebnisse. Die Forschungsarbeiten erfolgten in enger Kooperation mit theoretischen Physikern der LMU um Prof. Ulrich Schollwöck, dem Forschungszentrum Jülich, dem Wissenschaftskolleg Berlin und der University of Queensland (Australien).

Seit langem gehen Wissenschaftler der fundamentalen Frage nach, wie und ob ein aus dem Gleichgewicht gebrachtes Quanten-Vielteilchensystem wieder zur Ruhe kommt, wenn ihm jeglicher Kontakt zur Außenwelt fehlt. Die Konzepte der Thermodynamik, wie z. B. das alltäglich erfahrbare Phänomen, dass sich der morgendliche Kaffee langsam auf Raumtemperatur abkühlt (und dabei auch den Raum ein wenig aufheizt), lassen sich in diesem Szenario nicht mehr unmittelbar anwenden. Das in der statistischen Mechanik geltende Prinzip der maximalen Entropie legt zwar fest, welche Zustände im Gleichgewicht zu erwarten sind, aber nicht, wie die dorthin führenden dynamischen Prozesse in einem von der Umwelt isolierten Quantensystem ablaufen, und ob überhaupt ein Gleichgewicht erreicht wird. Wegen der hohen Komplexität der zugrunde liegenden Quantendynamik und der Möglichkeit der Verschränkung von Quantenteilchen versagen selbst ausgefeilte numerische Methoden bei dem Versuch, dieses Problem für große Teilchenzahlen und längere Zeiträume zu lösen. Wissenschaftler der Gruppe von Prof. Bloch haben solche „Relaxationsprozesse“ jetzt experimentell in stark korrelierten Quanten-Vielteilchen-systemen verfolgen können.

Im Experiment werden extrem kalte Rubidiumatome in ein dreidimensionales „optisches Gitter“ geladen, das durch paarweise interferierende Laserstrahlen entsteht. In dieser periodischen Folge von hellen und dunklen Bereichen ordnen sich auch die Atome zu einer regelmäßigen Struktur an, da sie – je nach Wellenlänge des Lichts – entweder in den hellen oder in den dunklen Gebieten fest gehalten werden. Dabei sorgt eine abstoßende Wechselwirkung zwischen ihnen dafür, dass höchstens ein Atom auf einem Gitterplatz zu finden ist. Mit Hilfe eines weiteren optischen „Übergitters“ mit doppelter Periode manipulieren die Wissenschaftler diese Anordnung so, dass die Atome schließlich in einer Raumrichtung nur jeden zweiten Gitterplatz besetzen und dort zunächst fixiert sind. Nun wird plötzlich die Tiefe des Gitters entlang dieser „Dichtewelle“ soweit verringert, dass die Atome nach den Regeln der Quantenmechanik in dieser Richtung auf ihre Nachbarplätze „tunneln“ und dort mit anderen Teilchen zusammenstoßen dürfen. Die anfängliche Dichteverteilung ist dabei weit entfernt von einem Gleichgewichtszustand. Nach unterschiedlichen Relaxationszeiten wird der Tunnelprozess wieder teilweise oder gänzlich unterdrückt und die zu diesem Zeitpunkt herrschende Verteilung der Teilchen im Gitter bestimmt. Daraus lassen sich Eigenschaften wie lokale Dichten und Tunnelströme in Abhängigkeit von der Zeit und der Gittertiefe ableiten.

Auf kurzen Zeitskalen werden die Messungen hervorragend von numerischen Rechnungen reproduziert, wobei die Vielteilchendynamik ohne Verwendung freier Parameter simuliert wurde. Im Laufe der Zeit bilden sich jedoch immer mehr Korrelationen zwischen weit entfernten Teilchen aus, für deren Berücksichtigung die Kapazität klassischer Rechner nicht ausreicht. Das Experiment dagegen liefert auch für Zeiträume, die weit über die theoretischen Vorhersagen hinausgehen, aussagekräftige Resultate (siehe Abbildung). Dies untermauert die Eignung solcher kalten Quantengase als Simulatoren von Relaxationsprozessen in Vielteilchensystemen. Sie zeigen hier eine höhere Leistungsfähigkeit als klassische Großrechner. Darüber hinaus gewähren diese Untersuchungen einen Einblick in den Ablauf fundamentaler Tunnelprozesse sowie in die Gleichgewichtseigenschaften des Systems nach der Relaxation. Diese Erkenntnisse zeigen neue Wege auf, die Physik kondensierter Materie und ihre Dynamik besser zu verstehen. [ST/OM]

Originalveröffentlichung:
S. Trotzky, Y-A. Chen, A. Flesch, I. P. McCulloch, U. Schollwöck, J. Eisert & I. Bloch
Probing the relaxation towards equilibrium in an isolated strongly correlated one-dimensional Bose gas

Nature Physics, AOP, 19. Februar 2012, Doi:10.1038/nphys2232

Kontakt:

Prof. Dr. Immanuel Bloch
Lehrstuhl für Quantenoptik, LMU München
Schellingstr. 4, 80799 München, und
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching b. München
Tel.: +49 89 / 32 905 -138
E-Mail: immanuel.bloch@mpq.mpg.de
Prof. Dr. Ulrich Schollwöck
Lehrstuhl für theoretische Nanophysik
LMU München
Theresienstr. 37
80333 München
Tel.: +49 89 / 21 80 - 41 17
E-Mail: schollwoeck@lmu.de
Dr. Olivia Meyer-Streng
Max-Planck-Institut für Quantenoptik
Presse- und Öffentlichkeitsarbeit
Tel.: +49 89 / 32 905 -213
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Weitere Informationen:
http://www.mpq.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht MADMAX: Ein neues Experiment zur Erforschung der Dunklen Materie
20.10.2017 | Max-Planck-Institut für Physik

nachricht Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung
20.10.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung

Seit dreißig Jahren gibt eine bestimmte Uranverbindung der Forschung Rätsel auf. Obwohl die Kristallstruktur einfach ist, versteht niemand, was beim Abkühlen unter eine bestimmte Temperatur genau passiert. Offenbar entsteht eine so genannte „versteckte Ordnung“, deren Natur völlig unklar ist. Nun haben Physiker erstmals diese versteckte Ordnung näher charakterisiert und auf mikroskopischer Skala untersucht. Dazu nutzten sie den Hochfeldmagneten am HZB, der Neutronenexperimente unter extrem hohen magnetischen Feldern ermöglicht.

Kristalle aus den Elementen Uran, Ruthenium, Rhodium und Silizium haben eine geometrisch einfache Struktur und sollten keine Geheimnisse mehr bergen. Doch das...

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Im Focus: Neue Möglichkeiten für die Immuntherapie beim Lungenkrebs entdeckt

Eine gemeinsame Studie der Universität Bern und des Inselspitals Bern zeigt, dass spezielle Bindegewebszellen, die in normalen Blutgefässen die Wände abdichten, bei Lungenkrebs nicht mehr richtig funktionieren. Zusätzlich unterdrücken sie die immunologische Bekämpfung des Tumors. Die Resultate legen nahe, dass diese Zellen ein neues Ziel für die Immuntherapie gegen Lungenkarzinome sein könnten.

Lungenkarzinome sind die häufigste Krebsform weltweit. Jährlich werden 1.8 Millionen Neudiagnosen gestellt; und 2016 starben 1.6 Millionen Menschen an der...

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Das Immunsystem in Extremsituationen

19.10.2017 | Veranstaltungen

Die jungen forschungsstarken Unis Europas tagen in Ulm - YERUN Tagung in Ulm

19.10.2017 | Veranstaltungen

Bauphysiktagung der TU Kaiserslautern befasst sich mit energieeffizienten Gebäuden

19.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Forscher finden Hinweise auf verknotete Chromosomen im Erbgut

20.10.2017 | Biowissenschaften Chemie

Saugmaschinen machen Waschwässer von Binnenschiffen sauberer

20.10.2017 | Ökologie Umwelt- Naturschutz

Strukturbiologieforschung in Berlin: DFG bewilligt Mittel für neue Hochleistungsmikroskope

20.10.2017 | Förderungen Preise