Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der erste dynamische Quantensimulator

15.03.2012
Ein internationales Wissenschaftlerteam hat experimentell die Überlegenheit von Quantensimulatoren verglichen mit modernen numerischen Methoden nachgewiesen.

Theoretischen Konzepten zufolge sollten „Quantensimulatoren“ Zugang zu komplexen physikalischen Prozessen ermöglichen, die mit den besten klassischen Algorithmen und verfügbaren Großrechnern nicht mehr zu erschließen sind. Eine Forschergruppe um Prof. Immanuel Bloch (Max-Planck-Institut für Quantenoptik in Garching und Ludwig-Maximilians-Universität München (LMU)) hat jetzt diese Überlegenheit experimentell nachgewiesen (Nature Physics, AOP, 19. Februar 2012, Doi:10.1038/nphys2232).



Abbildung: (links) Schematische Darstellung der Experimente: In einem optischen Gitter wird eine periodische Anordnung von Atomen präpariert. Unter dem Einfluss von Quantentunneln und abstoßender Wechselwirkung zwischen den Atomen ändert sich die anfängliche Dichteverteilung dynamisch in einem definierten Zeitraum t. (rechts) Der direkte Vergleich mit parameterfreien numerischen Simulationen verifiziert das für die Dynamik anzusetzende Modell für kurze Evolutionszeiten. Für längere Zeiten bricht die numerische Simulation (schwarze Linie) zusammen, während der experimentelle Quantensimulator (blaue Kreise) weiterhin Ergebnisse liefert. Grafik: MPQ

Die Wissenschaftler konnten erstmals dynamische Prozesse in einem Vielteilchensystem aus stark korrelierten ultrakalten Atomen in einem optischen Gitter verfolgen. Insbesondere konnten sie dabei Erkenntnisse über die Relaxationsvorgänge in einem isolierten System gewinnen, das anfänglich weit von seinem Gleichgewichtszustand entfernt ist. Auf kurzen Zeitskalen wurden die Messungen hervorragend von numerischen Rechnungen reproduziert, was die Eignung des Systems als Quantensimulator untermauert.

Das System liefert jedoch auch für längere Zeiträume, die für klassische Methoden nicht mehr zugänglich sind, aussagekräftige Ergebnisse. Die Forschungsarbeiten erfolgten in enger Kooperation mit theoretischen Physikern der LMU um Prof. Ulrich Schollwöck, dem Forschungszentrum Jülich, dem Wissenschaftskolleg Berlin und der University of Queensland (Australien).

Seit langem gehen Wissenschaftler der fundamentalen Frage nach, wie und ob ein aus dem Gleichgewicht gebrachtes Quanten-Vielteilchensystem wieder zur Ruhe kommt, wenn ihm jeglicher Kontakt zur Außenwelt fehlt. Die Konzepte der Thermodynamik, wie z. B. das alltäglich erfahrbare Phänomen, dass sich der morgendliche Kaffee langsam auf Raumtemperatur abkühlt (und dabei auch den Raum ein wenig aufheizt), lassen sich in diesem Szenario nicht mehr unmittelbar anwenden. Das in der statistischen Mechanik geltende Prinzip der maximalen Entropie legt zwar fest, welche Zustände im Gleichgewicht zu erwarten sind, aber nicht, wie die dorthin führenden dynamischen Prozesse in einem von der Umwelt isolierten Quantensystem ablaufen, und ob überhaupt ein Gleichgewicht erreicht wird. Wegen der hohen Komplexität der zugrunde liegenden Quantendynamik und der Möglichkeit der Verschränkung von Quantenteilchen versagen selbst ausgefeilte numerische Methoden bei dem Versuch, dieses Problem für große Teilchenzahlen und längere Zeiträume zu lösen. Wissenschaftler der Gruppe von Prof. Bloch haben solche „Relaxationsprozesse“ jetzt experimentell in stark korrelierten Quanten-Vielteilchen-systemen verfolgen können.

Im Experiment werden extrem kalte Rubidiumatome in ein dreidimensionales „optisches Gitter“ geladen, das durch paarweise interferierende Laserstrahlen entsteht. In dieser periodischen Folge von hellen und dunklen Bereichen ordnen sich auch die Atome zu einer regelmäßigen Struktur an, da sie – je nach Wellenlänge des Lichts – entweder in den hellen oder in den dunklen Gebieten fest gehalten werden. Dabei sorgt eine abstoßende Wechselwirkung zwischen ihnen dafür, dass höchstens ein Atom auf einem Gitterplatz zu finden ist. Mit Hilfe eines weiteren optischen „Übergitters“ mit doppelter Periode manipulieren die Wissenschaftler diese Anordnung so, dass die Atome schließlich in einer Raumrichtung nur jeden zweiten Gitterplatz besetzen und dort zunächst fixiert sind. Nun wird plötzlich die Tiefe des Gitters entlang dieser „Dichtewelle“ soweit verringert, dass die Atome nach den Regeln der Quantenmechanik in dieser Richtung auf ihre Nachbarplätze „tunneln“ und dort mit anderen Teilchen zusammenstoßen dürfen. Die anfängliche Dichteverteilung ist dabei weit entfernt von einem Gleichgewichtszustand. Nach unterschiedlichen Relaxationszeiten wird der Tunnelprozess wieder teilweise oder gänzlich unterdrückt und die zu diesem Zeitpunkt herrschende Verteilung der Teilchen im Gitter bestimmt. Daraus lassen sich Eigenschaften wie lokale Dichten und Tunnelströme in Abhängigkeit von der Zeit und der Gittertiefe ableiten.

Auf kurzen Zeitskalen werden die Messungen hervorragend von numerischen Rechnungen reproduziert, wobei die Vielteilchendynamik ohne Verwendung freier Parameter simuliert wurde. Im Laufe der Zeit bilden sich jedoch immer mehr Korrelationen zwischen weit entfernten Teilchen aus, für deren Berücksichtigung die Kapazität klassischer Rechner nicht ausreicht. Das Experiment dagegen liefert auch für Zeiträume, die weit über die theoretischen Vorhersagen hinausgehen, aussagekräftige Resultate (siehe Abbildung). Dies untermauert die Eignung solcher kalten Quantengase als Simulatoren von Relaxationsprozessen in Vielteilchensystemen. Sie zeigen hier eine höhere Leistungsfähigkeit als klassische Großrechner. Darüber hinaus gewähren diese Untersuchungen einen Einblick in den Ablauf fundamentaler Tunnelprozesse sowie in die Gleichgewichtseigenschaften des Systems nach der Relaxation. Diese Erkenntnisse zeigen neue Wege auf, die Physik kondensierter Materie und ihre Dynamik besser zu verstehen. [ST/OM]

Originalveröffentlichung:
S. Trotzky, Y-A. Chen, A. Flesch, I. P. McCulloch, U. Schollwöck, J. Eisert & I. Bloch
Probing the relaxation towards equilibrium in an isolated strongly correlated one-dimensional Bose gas

Nature Physics, AOP, 19. Februar 2012, Doi:10.1038/nphys2232

Kontakt:

Prof. Dr. Immanuel Bloch
Lehrstuhl für Quantenoptik, LMU München
Schellingstr. 4, 80799 München, und
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching b. München
Tel.: +49 89 / 32 905 -138
E-Mail: immanuel.bloch@mpq.mpg.de
Prof. Dr. Ulrich Schollwöck
Lehrstuhl für theoretische Nanophysik
LMU München
Theresienstr. 37
80333 München
Tel.: +49 89 / 21 80 - 41 17
E-Mail: schollwoeck@lmu.de
Dr. Olivia Meyer-Streng
Max-Planck-Institut für Quantenoptik
Presse- und Öffentlichkeitsarbeit
Tel.: +49 89 / 32 905 -213
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Weitere Informationen:
http://www.mpq.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit
26.06.2017 | Universität Bremen

nachricht NAWI Graz-Forschende vermessen Lichtfelder erstmals in 3D
26.06.2017 | Technische Universität Graz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Future Security Conference 2017 in Nürnberg - Call for Papers bis 31. Juli

26.06.2017 | Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

„Digital Mobility“– 48 Mio. Euro für die Entwicklung des digitalen Fahrzeuges

26.06.2017 | Förderungen Preise

Fahrerlose Transportfahrzeuge reagieren bald automatisch auf Störungen

26.06.2017 | Verkehr Logistik

Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit

26.06.2017 | Physik Astronomie