Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der erste dynamische Quantensimulator

15.03.2012
Ein internationales Wissenschaftlerteam hat experimentell die Überlegenheit von Quantensimulatoren verglichen mit modernen numerischen Methoden nachgewiesen.

Theoretischen Konzepten zufolge sollten „Quantensimulatoren“ Zugang zu komplexen physikalischen Prozessen ermöglichen, die mit den besten klassischen Algorithmen und verfügbaren Großrechnern nicht mehr zu erschließen sind. Eine Forschergruppe um Prof. Immanuel Bloch (Max-Planck-Institut für Quantenoptik in Garching und Ludwig-Maximilians-Universität München (LMU)) hat jetzt diese Überlegenheit experimentell nachgewiesen (Nature Physics, AOP, 19. Februar 2012, Doi:10.1038/nphys2232).



Abbildung: (links) Schematische Darstellung der Experimente: In einem optischen Gitter wird eine periodische Anordnung von Atomen präpariert. Unter dem Einfluss von Quantentunneln und abstoßender Wechselwirkung zwischen den Atomen ändert sich die anfängliche Dichteverteilung dynamisch in einem definierten Zeitraum t. (rechts) Der direkte Vergleich mit parameterfreien numerischen Simulationen verifiziert das für die Dynamik anzusetzende Modell für kurze Evolutionszeiten. Für längere Zeiten bricht die numerische Simulation (schwarze Linie) zusammen, während der experimentelle Quantensimulator (blaue Kreise) weiterhin Ergebnisse liefert. Grafik: MPQ

Die Wissenschaftler konnten erstmals dynamische Prozesse in einem Vielteilchensystem aus stark korrelierten ultrakalten Atomen in einem optischen Gitter verfolgen. Insbesondere konnten sie dabei Erkenntnisse über die Relaxationsvorgänge in einem isolierten System gewinnen, das anfänglich weit von seinem Gleichgewichtszustand entfernt ist. Auf kurzen Zeitskalen wurden die Messungen hervorragend von numerischen Rechnungen reproduziert, was die Eignung des Systems als Quantensimulator untermauert.

Das System liefert jedoch auch für längere Zeiträume, die für klassische Methoden nicht mehr zugänglich sind, aussagekräftige Ergebnisse. Die Forschungsarbeiten erfolgten in enger Kooperation mit theoretischen Physikern der LMU um Prof. Ulrich Schollwöck, dem Forschungszentrum Jülich, dem Wissenschaftskolleg Berlin und der University of Queensland (Australien).

Seit langem gehen Wissenschaftler der fundamentalen Frage nach, wie und ob ein aus dem Gleichgewicht gebrachtes Quanten-Vielteilchensystem wieder zur Ruhe kommt, wenn ihm jeglicher Kontakt zur Außenwelt fehlt. Die Konzepte der Thermodynamik, wie z. B. das alltäglich erfahrbare Phänomen, dass sich der morgendliche Kaffee langsam auf Raumtemperatur abkühlt (und dabei auch den Raum ein wenig aufheizt), lassen sich in diesem Szenario nicht mehr unmittelbar anwenden. Das in der statistischen Mechanik geltende Prinzip der maximalen Entropie legt zwar fest, welche Zustände im Gleichgewicht zu erwarten sind, aber nicht, wie die dorthin führenden dynamischen Prozesse in einem von der Umwelt isolierten Quantensystem ablaufen, und ob überhaupt ein Gleichgewicht erreicht wird. Wegen der hohen Komplexität der zugrunde liegenden Quantendynamik und der Möglichkeit der Verschränkung von Quantenteilchen versagen selbst ausgefeilte numerische Methoden bei dem Versuch, dieses Problem für große Teilchenzahlen und längere Zeiträume zu lösen. Wissenschaftler der Gruppe von Prof. Bloch haben solche „Relaxationsprozesse“ jetzt experimentell in stark korrelierten Quanten-Vielteilchen-systemen verfolgen können.

Im Experiment werden extrem kalte Rubidiumatome in ein dreidimensionales „optisches Gitter“ geladen, das durch paarweise interferierende Laserstrahlen entsteht. In dieser periodischen Folge von hellen und dunklen Bereichen ordnen sich auch die Atome zu einer regelmäßigen Struktur an, da sie – je nach Wellenlänge des Lichts – entweder in den hellen oder in den dunklen Gebieten fest gehalten werden. Dabei sorgt eine abstoßende Wechselwirkung zwischen ihnen dafür, dass höchstens ein Atom auf einem Gitterplatz zu finden ist. Mit Hilfe eines weiteren optischen „Übergitters“ mit doppelter Periode manipulieren die Wissenschaftler diese Anordnung so, dass die Atome schließlich in einer Raumrichtung nur jeden zweiten Gitterplatz besetzen und dort zunächst fixiert sind. Nun wird plötzlich die Tiefe des Gitters entlang dieser „Dichtewelle“ soweit verringert, dass die Atome nach den Regeln der Quantenmechanik in dieser Richtung auf ihre Nachbarplätze „tunneln“ und dort mit anderen Teilchen zusammenstoßen dürfen. Die anfängliche Dichteverteilung ist dabei weit entfernt von einem Gleichgewichtszustand. Nach unterschiedlichen Relaxationszeiten wird der Tunnelprozess wieder teilweise oder gänzlich unterdrückt und die zu diesem Zeitpunkt herrschende Verteilung der Teilchen im Gitter bestimmt. Daraus lassen sich Eigenschaften wie lokale Dichten und Tunnelströme in Abhängigkeit von der Zeit und der Gittertiefe ableiten.

Auf kurzen Zeitskalen werden die Messungen hervorragend von numerischen Rechnungen reproduziert, wobei die Vielteilchendynamik ohne Verwendung freier Parameter simuliert wurde. Im Laufe der Zeit bilden sich jedoch immer mehr Korrelationen zwischen weit entfernten Teilchen aus, für deren Berücksichtigung die Kapazität klassischer Rechner nicht ausreicht. Das Experiment dagegen liefert auch für Zeiträume, die weit über die theoretischen Vorhersagen hinausgehen, aussagekräftige Resultate (siehe Abbildung). Dies untermauert die Eignung solcher kalten Quantengase als Simulatoren von Relaxationsprozessen in Vielteilchensystemen. Sie zeigen hier eine höhere Leistungsfähigkeit als klassische Großrechner. Darüber hinaus gewähren diese Untersuchungen einen Einblick in den Ablauf fundamentaler Tunnelprozesse sowie in die Gleichgewichtseigenschaften des Systems nach der Relaxation. Diese Erkenntnisse zeigen neue Wege auf, die Physik kondensierter Materie und ihre Dynamik besser zu verstehen. [ST/OM]

Originalveröffentlichung:
S. Trotzky, Y-A. Chen, A. Flesch, I. P. McCulloch, U. Schollwöck, J. Eisert & I. Bloch
Probing the relaxation towards equilibrium in an isolated strongly correlated one-dimensional Bose gas

Nature Physics, AOP, 19. Februar 2012, Doi:10.1038/nphys2232

Kontakt:

Prof. Dr. Immanuel Bloch
Lehrstuhl für Quantenoptik, LMU München
Schellingstr. 4, 80799 München, und
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching b. München
Tel.: +49 89 / 32 905 -138
E-Mail: immanuel.bloch@mpq.mpg.de
Prof. Dr. Ulrich Schollwöck
Lehrstuhl für theoretische Nanophysik
LMU München
Theresienstr. 37
80333 München
Tel.: +49 89 / 21 80 - 41 17
E-Mail: schollwoeck@lmu.de
Dr. Olivia Meyer-Streng
Max-Planck-Institut für Quantenoptik
Presse- und Öffentlichkeitsarbeit
Tel.: +49 89 / 32 905 -213
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Weitere Informationen:
http://www.mpq.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Proteintransport - Stau in der Zelle
24.03.2017 | Ludwig-Maximilians-Universität München

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise