Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Erste Aufnahme von sich bewegenden Elektronen

19.03.2010
Wissenschaftlern der französischen Behörde für Atomenergie und alternative Energien (CEA), des französischen Zentrums für wissenschaftliche Forschung (CNRS) und der Pierre und Marie Curie Universität (UPMC, Paris) gelang eine erste Momentaufnahme von Elektronen, die sich im Innern eines Moleküls bewegen.

Dieses Bild wurde durch Röntgenfotografie erzeugt, bei einer extrem kurzen Belichtungszeit (Größenordnung: Attosekunde [1]) und einer sehr hohen räumlichen Auflösung (Größenordnung: Angström [2]). Die Ergebnisse wurden am 1. März 2010 in der Zeitschrift "Nature Physics" veröffentlicht [3].

Nach den Gesetzen der Quantenmechanik ist es auf mikroskopischer Ebene ausgeschlossen, dass gleichzeitig Position und Geschwindigkeit eines Elementarteilchens mit Genauigkeit bestimmt werden können (Heisenbergsche Unschärferelation). Des Weiteren beeinflusst die Messung das System, so dass man in diesem Bereich nur von Wahrscheinlichkeiten, jedoch nicht von Gewissheiten ausgehen kann. Die Modellierung dieser Wahrscheinlichkeitsmessungen bezüglich des atomaren Zustandes beruht auf dem Konzept der Einzelelektronen-Wellenfunktionen (Orbitale), die eigentlich nur ein mathematisches Hilfsmittel zur Beschreibung der Aufenthaltswahrscheinlichkeit eines Elektrons darstellen.

Daraus ergab sich die Frage, ob diese Wellenfunktionen eventuell doch beobachtbar sind. Ein erster Schritt in diese Richtung gelang 2004 einem kanadischen Forschungsteam, das eine Möglichkeit zur Beobachtung eines Orbitalen vorschlug. Die Methode beruht auf einer tomografischen Untersuchung der Röntgenstrahlung, die von Molekülen, stark angeregt durch einen Laserimpuls, ausgestrahlt werden.

Dieses Konzept wurde nun zum ersten Mal unter der Leitung von Richard Taïeb (Theorie, UPMC/CNRS) und Pascal Salières (Praxis, CEA) umgesetzt. Es gelang diesen beiden Teams, die auf die Charakterisierung, die Steuerung und die Verwendung von Attosekunden-Röntgenstrahlen spezialisiert sind, die Voraussetzungen zur Beobachtung der zwei äußeren Orbitalen eines Stickstoff-Moleküls (N2) zu schaffen. So konnten sie, ca. 1500 Attosekunden nach der Anregung, eine Momentaufnahme der Wellenfunktion der Elektronen dieses Moleküls machen.

Diese neuen Ergebnisse zeigen, dass Wellenfunktionen unter bestimmten Voraussetzungen beobachtbar sind.

Dadurch ist es jetzt möglich, die ultra-schnelle Dynamik der Elektronen innerhalb eines Moleküls zu verfolgen, wenn eine ausreichend kurze Belichtungszeit von wenigen Attosekunden und eine ausreichend hohe räumliche Auflösung im Bereich eines Angströms verwendet werden. Somit sollte eine Möglichkeit geboten sein, experimentelle "Filme" zu realisieren, die den Umordnungsmechanismus molekularer Orbitale während einer chemischen Reaktion aufzeigen. [1] Eine Attosekunde entspricht 10-18 Sekunden [2] Ein Angström entspricht 10-10 Metern [3] Vollständige Referenz: S. Hässler et al., "Attosecond imaging of molecular electronic wavepackets", Nature physics, 1. März 2010

Quelle: "Première "photographie" d'électrons en mouvement dans une molécule", Pressemitteilung des CEA - 01.03.2010 http://www.cea.fr/le_cea/actualites/electrons_en_mouvement-32260

Redakteur: Sebastian Ritter, sebastian.ritter@diplomatie.gouv.fr

Wissenschaft-Frankreich (Nummer 179 vom 17.03.2010) Französische Botschaften in Deutschland und Österreich

Sebastian Ritter | Wissenschaft-Frankreich
Weitere Informationen:
http://www.wissenschaft-frankreich.de/allemand

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Quantenmechanik ist komplex genug – vorerst …
21.04.2017 | Universität Wien

nachricht Tief im Inneren von M87
20.04.2017 | Max-Planck-Institut für Radioastronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Immunzellen helfen bei elektrischer Reizleitung im Herzen

Erstmals elektrische Kopplung von Muskelzellen und Makrophagen im Herzen nachgewiesen / Erkenntnisse könnten neue Therapieansätze bei Herzinfarkt und Herzrhythmus-Störungen ermöglichen / Publikation am 20. April 2017 in Cell

Makrophagen, auch Fresszellen genannt, sind Teil des Immunsystems und spielen eine wesentliche Rolle in der Abwehr von Krankheitserregern und bei der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Forschungsexpedition „Meere und Ozeane“ mit dem Ausstellungsschiff MS Wissenschaft

24.04.2017 | Veranstaltungen

3. Bionik-Kongress Baden-Württemberg

24.04.2017 | Veranstaltungen

Smart-Data-Forschung auf dem Weg in die wirtschaftliche Praxis

21.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Phoenix Contact übernimmt Spezialisten für Netzleittechnik

24.04.2017 | Unternehmensmeldung

Phoenix Contact beteiligt sich an Berliner Start-up Unternehmen für Energiemanagement

24.04.2017 | Unternehmensmeldung

Phoenix Contact übernimmt Spezialisten für industrielle Kommunikationstechnik

24.04.2017 | Unternehmensmeldung