Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Erlanger Physikern gelingt es, Störsignale zu entfernen

16.08.2010
Für Techniker ist es ein unumgehbares Gesetz: Beim Verstärken eines Lichtsignals entsteht Rauschen. Für Experten galt bislang: Auch ein perfekter Verstärker kann dieses so genannte Quantenrauschen nicht vermeiden. Dass dies doch möglich ist, haben Forscher am Max-Planck-Institut für die Physik des Lichts und an der Friedrich-Alexander-Universität Erlangen-Nürnberg nun experimentell bewiesen.

Das Signal erhält einen zufallsbestimmten Anteil, der keine Information trägt und nur stört. Bemerkbar macht sich die unerwünschte Begleiterscheinung etwa beim Informationstransfer über den Atlantik durch Glasfaserkabel. Alle paar Kilometer müssen die Signale verstärkt werden, damit sie die weite Entfernung überbrücken können.

Würde dabei nicht jedes Mal Rauschen hinzugefügt, ließe sich durch die Kabel mehr Information pro Zeiteinheit transportieren. Ein gewisser Teil dieses Rauschens kommt nicht von der unvollkommenen Verstärkertechnik, sondern liegt in der quantenphysikalischen Natur der Lichtteilchen (Photonen) begründet, aus denen die Lichtsignale bestehen.

Das Quantenrauschen resultiert aus der Unbestimmtheit, die die Welt von Photonen, Elektronen und Atomen beherrscht. Der Ort und der Impuls eines Teilchens lässt sich gemäß der berühmten Heisenbergschen Unschärferelation nicht gleichzeitig exakt bestimmen. Bei einer Lichtwelle ist es ähnlich. Sie besteht aus Photonen und ist daher Teil der Quantenwelt. Ihre Amplitude und ihre Phase lassen sich nicht gleichzeitig exakt bestimmen. Verstärkt man ein optisches Signal, erhöht man auch dessen Unbestimmtheit. Das äußert sich darin, dass das verstärkte Signal einen störenden Anteil besitzt, der keine Information enthält - das Quantenrauschen.

Es definiert die unterste Grenze des Rauschens, das beim Verstärken eines Lichtsignals unweigerlich entsteht. Mit anderen Worten: Weniger Rauschen geht nicht. Das Quantenrauschen spielt im Alltagsleben meist keine Rolle, weil es nur bei der Verstärkung äußerst schwacher Signale ins Gewicht fällt. In Forschungslabors und im transatlantischen Glasfasernetz hingegen werden Signalstärken genutzt, die so klein sind, dass selbst das schwache Quantenrauschen schon stört.

Doch zumindest für Anwendungen in der Forschung könnte sich das bald ändern. Eine Kollaboration um Gerd Leuchs und Christoph Marquardt vom Erlanger Max-Planck-Institut für die Physik des Lichts und der Universität Erlangen-Nürnberg, zusammen mit Ulrik Andersen von der Technischen Universität Dänemark und Radim Filip von der Palacky Universität Olomouc hat eine verblüffende Entdeckung gemacht. Die Physiker haben bewiesen, dass sich optische Signale ganz ohne Rauschen verstärken lassen. Mehr noch: Sie zeigten, dass die Phase des Lichtes nach der Verstärkung sogar weniger unbestimmt war als vorher. Die Phase des Lichtes dient bei manchen Anwendungen als wichtiger Informationsträger, etwa bei Interferometern, die unter anderem kleinste Längenunterschiede messen.

Dieser experimentelle Erfolg gelang etwa zeitgleich mit ähnlichen Arbeiten einer australischen, einer italienischen und einer französischen Gruppe. „Das neue Konzept der deutsch-tschechisch-dänischen Kollaboration zeichnet sich durch besondere Einfachheit und daher gute Implementierbarkeit aus“, sagt Gerd Leuchs, Leitender Direktor des Max-Planck-Instituts für die Physik des Lichts und Inhaber des Lehrstuhls für Optik der Universität Erlangen-Nürnberg.

Der Trick: Entfernen von Lichtteilchen
Die Erlanger Forscher haben in ihrem Experiment zunächst äußerst schwache Laserpulse erzeugt. Paradoxerweise gelang den Forschern deren rauschfreie Verstärkung, indem sie dem unverstärkten Laserpuls zunächst stark verrauschtes Licht hinzufügten, ihm also absichtlich ein Rauschen aufzwangen.

Dadurch steigt zwar die Intensität des Lichtes. Aber es wächst auch die Unbestimmtheit der Phase des Signals. Darauf folgt der eigentliche Trick: Durch eine relativ einfache Technik entfernen die Erlanger Forscher aus dem verrauschten Puls eine bestimmte Anzahl von Photonen. Quantenphysikalisch betrachtet entspricht eine feste Anzahl von Photonen einem Zustand des Lichtes, bei dem die Phase völlig unbestimmt ist, also jeden beliebigen Wert annehmen kann. Das Herausnehmen eines solchen Zustands verändert das Lichtsignal: Seine Phase gewinnt deutlich an Bestimmtheit. Vereinfacht ausgedrückt bleiben nach dem Entfernen von Photonen mit beliebiger Phase Lichtteilchen mit relativ genau festgelegter Phase übrig.

Weil die herausgenommenen Photonen zudem eine relativ geringe Amplitude aufweisen, bleiben nach ihrem Entfernen nur die Photonen mit hoher Amplitude übrig. Die Lichtwelle hat somit eine höhere Amplitude als vor dem Hinzufügen des Rauschens. Je höher die Amplitude der Lichtwelle, desto größer ist ihre Intensität. Die durch das Hinzufügen des Rauschens gewonnene Intensität bleibt also erhalten. Das Signal wird verstärkt.

Die Forscher stellten durch eine Messreihe fest, dass die Phase umso genauer festgelegt und die Amplitude umso größer wird, je mehr Photonen herausgenommen werden. Maximal entfernten die Physiker vier Photonen, wodurch eine Verdopplung der Amplitude gelang.

Nicht für Übertragung per Glasfaselkabel geeignet
Die Medaille hat allerdings auch eine Kehrseite. Nicht aus jedem Lichtpuls lässt sich eine vorgegebene Anzahl von Photonen entfernen. Daher gelingt die Verstärkung nur für einen Teil der Lichtpulse, die vom Laser erzeugt werden. Der Anteil der Pulse, die nicht verstärkt werden können, steigt mit der Anzahl der entnommenen Photonen, also umso stärker, je stärker die Unbestimmtheit der Phase vermindert werden kann.

„Daher lässt sich die Technik nicht für die Informationsübertragung durch Glasfaserkabel nutzen“, sagt Christoffer Wittmann, der an den Experimenten mitwirkte. Denn Information wird, ähnlich wie beim Morsecode, durch eine Folge von Lichtpulsen übermittelt. Wenn ein Teil davon fehlt, geht unweigerlich Information verloren. Welche Pulse verstärkt werden können und welche nicht, ist rein vom Zufall gesteuert und somit nicht vorherseh- oder steuerbar. Auf diese Weise kommt das Rauschen gewissermaßen durch die Hintertür wieder ins System. „Wenn man die Wahrscheinlichkeit dafür, dass ein Puls nicht verstärkt werden kann, in den Formeln für die Unbestimmtheit berücksichtigt, zeigt sich, dass wir die Heisenbergsche Unschärferelation nicht verletzt haben“, sagt Christian Müller, der das Experiment mit aufgebaut hat. Diese fundamentale Formel könne nur probabilistisch umgangen werden. Die Zufallsnatur der Quantenphysik bleibt somit erhalten.

Dennoch sieht Christoph Marquardt Anwendungen der von den Erlanger Physikern entwickelten Technik. Überall, wo es nicht nötig sei, alle ankommenden Signale zu verstärken, könne die Technik von Nutzen sein. „Sie könnte bei der Detektion von sehr schwachen Signalen helfen, die ab und zu auftreten und normalerweise im Rauschen untergehen, daher also nicht nachweisbar sind“, sagt der Forscher. Als Beispiel nennt er die Detektion von Gravitationswellen. Diese entstehen in den Tiefen des Alls, beispielsweise bei Supernova-Explosionen und durchdringen auf ihrem Weg durchs All auch die Erde. Da sie den Raum ein wenig dehnen und stauchen, machen sie sich laut Theorie durch winzigste Längenänderungen bemerkbar. Um diese nachzuweisen, suchen Forscher nach äußerst schwachen Signalen in eigens dafür konzipierten Laserinterferometern. „Hier wäre man froh, wenn man überhaupt einmal ein Signal detektieren könnte“, sagt Marquardt. „Solch eine Suche nach schwachen Signalen findet man auch in anderen Systemen, bei denen der neue Verstärker eingesetzt werden kann.“

1) Originalveröffentlichung:
Mario A. Usuga, Christian R. Müller, Christoffer Wittmann, Petr Marek, Radim Filip, Christoph Marquardt, Gerd Leuchs, Ulrik L. Andersen, „Noise-powered probabilistic concentration of phase information“, Nature Physics, Advanced Online Publication: DOI 10.1038/NPHYS1743

Die Universität Erlangen-Nürnberg, gegründet 1743, ist mit 27.000 Studierenden, 550 Professorinnen und Professoren sowie 2000 wissenschaftlichen Mitarbeiterinnen und Mitarbeitern die größte Universität in Nordbayern.

Schwerpunkte in Forschung und Lehre liegen an den Schnittstellen von Naturwissenschaften, Technik und Medizin in engem Dialog mit Jura und Theologie sowie den Geistes-, Sozial- und Wirtschaftswissenschaften. Seit Mai 2008 trägt die Universität das Siegel „familiengerechte Hochschule“.

Mehr Informationen für die Medien:
Christoph Marquardt
Tel.: 09131/6877129
Christoph.Marquardt@physik.uni-erlangen.de

Pascale Anja Dannenberg | idw
Weitere Informationen:
http://www.uni-erlangen.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Sterngeburt in den Winden supermassereicher Schwarzer Löcher
28.03.2017 | ESO Science Outreach Network - Haus der Astronomie

nachricht Das anwachsende Ende der Ordnung
27.03.2017 | Universität Konstanz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Von Agenten, Algorithmen und unbeliebten Wochentagen

28.03.2017 | Unternehmensmeldung

Hannover Messe: Elektrische Maschinen in neuen Dimensionen

28.03.2017 | HANNOVER MESSE

Dimethylfumarat – eine neue Behandlungsoption für Lymphome

28.03.2017 | Medizin Gesundheit