Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Erforschung des Eismondes Enceladus: TU Braunschweig entwickelt Technik für Navigation und Ortung

23.04.2012
Durch die Raumsonde Cassini konnte 2007 die Existenz von eis-speienden Spalten auf der Oberfläche des Saturnmonds Enceladus nachgewiesen werden.
Aus diesen sogenannten Kryovulkanen schießen riesige Geysire Wasser bis in den Weltraum, wo es sofort gefriert. Beim Flug des Orbiters durch die Eispartikel wurden Spuren von Mikroorganismen entdeckt, die ein Hinweis auf Leben sein könnten. Man vermutet, dass die organischen Verbindungen beim Austritt in den Weltraum zerstört werden. Deshalb wollen Forscher die Wasservorkommen auf Enceladus genauer auf Lebensspuren untersuchen. Die TU Braunschweig sorgt für die Navigation und Ortung unter den besonderen Bedingungen des Eismondes.

Eisbohrsonde "IceMole"

Der Enceladus Explorer soll aus einer Basisstation zur Energieversorgung und der Eisbohrsonde „IceMole“ („Eismaulwurf“) bestehen. Nach der Landung, die in sicherer Entfernung zu den aktiven Spalten erfolgt, wird die Sonde über ein Kabel mit Energie von der Station versorgt. Die Eisbohrsonde „IceMole“ schmilzt und bohrt sich bis in eine Tiefe von 100 bis 200 Metern zu den warmen Spalten vor. Dabei soll er in beliebige Richtungen gesteuert werden. Anhand von Testmissionen in Alaska und der Antarktis ist zu klären, ob ein solches Szenario realistisch umgesetzt werden kann, und ob die Technik bereits allen Anforderungen standhalten kann.

Anforderungen an die Eisbohrsonde

Die Eisbohrsonde muss dabei folgende Anforderungen erfüllen:
- Sie soll fließendes Wasser im Eiskörper erkennen und den Abstand zu einem festgelegten Zielpunkt messen.

Das Bild zeigt die Collage des Enceladus selbst (rechts), seiner Struktur an der Stelle mit den Kryon Vulkanen (Mitte) und eine Darstellung des Masse Ausstoßes (links). DLR/NASA – frei zur Veröffentlichung bei Nennung der Quelle.

- Relativ zu einer Oberflächenstation und zum Zielpunkt muss sie ihre Lage und Position im Eis kontinuierlich bestimmen können.

- Sie soll Spalten und Hindernisse im Eiskörper entdecken und autonom den optimalen Weg zu ihrem Ziel bestimmen.

Für die Entwicklung des Navigationssystems wird die Eisforschungs-Sonde unter realistischen Bedingungen in Alaska (im Frühjahr 2013) und in der Antarktis (jeweils ab Ende 2013 und Ende 2014) getestet und verifiziert werden. Welche weiteren Szenarien werden beim extraterrestrischen Einsatz einer solchen Sonde realistisch? Auch dies müssen die Forscher vorab erkunden, um so die Rahmenbedingungen für das Gesamtdesign und den dortigen Betrieb des Navigationssystems vorausberechnen zu können. Wann die eigentliche Mission dann starten kann, ist derzeit noch nicht abzusehen.

Navigationslösung: Die Aufgabe des TU-Instituts für Flugführung
Der „IceMole“ bewegt sich mit einer Geschwindigkeit von einem Meter pro Stunde fort. Dabei kann er sich nicht nur nach unten bohren, wie bisherige Sonden, sondern sich auch horizontal, um die Kurve und auch bergauf bewegen. Um den „IceMole“ erfolgreich durch das Eis steuern zu können, wird ein ausgeklügeltes Navigationssystem benötigt. Auf Enceladus ist kein stabiles Magnetfeld vorhanden. Das Institut für Flugführung der TU Braunschweig muss deshalb für die Navigation im Eis hochpräzise Magnetometer zum Einsatz bringen. Der Vortrieb der Sonde wird mit unterschiedlichen Verfahren untersucht. Für den autonomen Einsatz der Sonde entwickeln die Forscher ein eigenes System, das die Bewegungspfade der Mission selbstständig organisiert.

Die Entwicklung der Navigationstechonologie für die zukünftige Erforschung wird zusammen mit Wissenschaftlern der Universität der Bundeswehr München, der FH Aachen, der RWTH Aachen, der Universität Wuppertal und der Universität Bremen für eine zukünftige Exploration des Enceladus durchgeführt. Das Verbundvorhaben mit dem Namen „EnEx-Enceladus Explorer“ hat mit dem Kick-off am 22. Februar 2012 begonnen. Das Forschungsprojekt wird vom Bundesministerium für Wirtschaft und Technologie in den nächsten drei Jahren mit über 3,5 Millionen Euro gefördert. Auf die TU Braunschweig entfallen davon etwa 480.000 Euro.

Kontakt
Dr.-Ing. Ulf Bestmann
Institut für Flugführung
Technische Universität Braunschweig
Tel.: +49 531 391-9815
E-Mail: u.bestmann@tu-braunschweig.de

Ulrike Rolf | idw
Weitere Informationen:
http://www.tu-braunschweig.de/iff

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Lange Speicherung photonischer Quantenbits für globale Teleportation
13.12.2017 | Max-Planck-Institut für Quantenoptik

nachricht Einmal durchleuchtet – dreifacher Informationsgewinn
11.12.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Materialinnovationen 2018 – Werkstoff- und Materialforschungskonferenz des BMBF

13.12.2017 | Veranstaltungen

Innovativer Wasserbau im 21. Jahrhundert

13.12.2017 | Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rest-Spannung trotz Megabeben

13.12.2017 | Geowissenschaften

Computermodell weist den Weg zu effektiven Kombinationstherapien bei Darmkrebs

13.12.2017 | Medizin Gesundheit

Winzige Weltenbummler: In Arktis und Antarktis leben die gleichen Bakterien

13.12.2017 | Geowissenschaften