Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Erfolgreiche Suche nach Atomkernen, mit denen Neutrinos erforscht werden können

08.02.2011
Messung von Atomkern-Massen mit höchster Präzision bei GSI

Mit der Ionenfalle Shiptrap haben Wissenschaftler bei GSI mit höchster Präzision die Massenunterschiede bestimmter Atomkerne gemessen, die für einen sehr seltenen radioaktiven Zerfallsprozess in Frage kommen. Somit konnten sie mit dem Isotop Gadolinium-152 den bislang am besten geeigneten Atomkern bestimmen, um durch seinen Zerfall in anderen zukünftigen Experimenten, neue Erkenntnisse über Neutrinos zu gewinnen.

Eine der Grundfragen der Kosmologie ist warum es nach dem Urknall mehr Materie als Antimaterie gab, so dass außer bloßer Strahlung überhaupt etwas übrig geblieben ist, um Galaxien, Sterne, Planetensysteme, Lebewesen und schließlich unsere eigene Existenz zu ermöglichen. Das Verständnis hierzu ist mit den Eigenschaften von Neutrinos verbunden. Neutrinos sind Elementarteilchen, die auch als Geisterteilchen bezeichnet werden, da sie nur extrem schwach mit der uns bekannten "gewöhnlichen" Materie in Wechselwirkung treten und diese nahezu ungehindert durchdringen. Dementsprechend sind noch viele Eigenschaften von Neutrinos unbekannt.

So wird zum Beispiel vermutet, dass ein Neutrino sein eigenes Antiteilchen sein könnte (sog. Majorana-Teilchen), ein noch niemals beobachtetes Phänomen. Das würde bedeuten, dass ein Neutrino und ein Anti-Neutrino identisch wären. Da sich ein Teilchen und sein Anti-Teilchen gegenseitig vernichten, hieße das, dass sich zwei Neutrinos selbst vernichten würden.

Neutrinos entstehen natürlicherweise in bestimmten radioaktiven Zerfällen von Atomkernen. Beim radioaktiven Zerfall wandelt sich ein Atomkern, der Mutterkern, in einen anderen, den Tochterkern, um. Ein möglicher Nachweis, ob das Neutrino sein eigenes Antiteilchen ist, wäre die Beobachtung einer bestimmten radioaktiven Zerfallsart, des so genannten neutrinolosen Doppel-Elektroneneinfangs. Bei diesem sehr seltenen Zerfallsprozess werden zwei Elektronen aus der Hülle von Protonen im Atomkern eingefangen und es entstehen unter anderem zwei Neutrinos. Wenn nun das Neutrino mit seinem Antiteilchen identisch wäre, so könnten sich diese gegenseitig auslöschen, sodass kein Neutrino ausgesendet würde, deshalb die Bezeichnung neutrinolos.

Dieser neutrinolose Zerfallsprozess ist allerdings experimentell, wenn überhaupt, nur nachweisbar, wenn die Masse des Mutterkerns zwar größer ist als die des Tochterkerns, sich dabei aber so gering wie möglich unterscheidet. Um auch noch geringste Massenunterschiede messen zu können, benutzten Wissenschaftler die Ionenfalle Shiptrap. Mit Shiptrap können die Wissenschaftler Massen mit höchster Genauigkeit messen. Mit der Genauigkeit könnten sie theoretisch nachweisen, ob in einem voll beladenen Jumbo-Jet ein Passagier eine 1 Euro Münze im Portemonnaie hat oder nicht.

Mit Shiptrap untersuchten die Wissenschaftler nun systematisch die Massen von möglichen Atomkernen, um den besten Kandidaten für den neutrinolosen Doppel-Elektroneneinfang zu bestimmen. Sie fanden heraus, dass das Gadolinium-Isotop mit der Massenzahl 152 (Gadolinium-152), welches in das Isotop Samarium-152 zerfällt, der zurzeit vielversprechendste Kandidat ist. Es ist somit das geeignete Isotop, um in zukünftigen Neutrino-Experimentaufbauten wie zum Beispiel in Gran Sasso untersucht zu werden mit dem Ziel, bei dessen Zerfall erstmalig die Vernichtung zweier Neutrinos nachzuweisen.

Über die Messung der Halbwertszeit von Gadolinium-152, die im Bereich von 10 hoch 26 Jahren liegt, ließen sich auch Grenzen für die Masse der Neutrinos bestimmen. Erst seit kurzem ist bekannt, dass Neutrinos überhaupt eine Masse haben, die allerdings sehr klein ist und noch nie direkt gemessen werden konnte. Der Ansatz über den Zerfall von Gadolinium-152 Informationen über die Masse der Neutrinos zu erhalten, ist komplementär zu anderen Experimentaufbauten in der Helmholtz-Gemeinschaft wie Katrin am KIT in Karlsruhe.

An den Experimenten bei GSI waren unter Federführung des Max-Planck-Instituts in Heidelberg 17 Wissenschaftler aus 11 Instituten beteiligt: Max-Planck-Institut für Kernphysik, Heidelberg, Ruprecht-Karls-Universität Heidelberg, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Ernst-Moritz-Arndt-Universität, Greifswald, Institute for Theoretical and Experimental Physics Moskau Russland, PNPI Gatchina, St. Petersburg, Russland, Helmholtz-Institut Mainz, Johannes Gutenberg-Universität Mainz, St. Petersburg State University, Russland, Joint Institute for Nuclear Research, Dubna, Russland, Comenius University Bratislava, Slowakei, Technische Universität Dresden

Dr. Ingo Peter | idw
Weitere Informationen:
http://dx.doi.org/10.1103/PhysRevLett.106.052504
http://www.mpi-hd.mpg.de/mpi/de/aktuelles/aktuelles/?tx_ttnews[tt_news]=110 -

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Blasen im Pulsarwind schlagen Funken
22.11.2017 | Max-Planck-Institut für Kernphysik

nachricht Eine Nano-Uhr mit präzisen Zeigern
21.11.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kleine Strukturen – große Wirkung

Innovative Schutzschicht für geringen Verbrauch künftiger Rolls-Royce Flugtriebwerke entwickelt

Gemeinsam mit Rolls-Royce Deutschland hat das Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS im Rahmen von zwei Vorhaben aus dem...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: Transparente Beschichtung für Alltagsanwendungen

Sport- und Outdoorbekleidung, die Wasser und Schmutz abweist, oder Windschutzscheiben, an denen kein Wasser kondensiert – viele alltägliche Produkte können von stark wasserabweisenden Beschichtungen profitieren. Am Karlsruher Institut für Technologie (KIT) haben Forscher um Dr. Bastian E. Rapp einen Werkstoff für solche Beschichtungen entwickelt, der sowohl transparent als auch abriebfest ist: „Fluoropor“, einen fluorierten Polymerschaum mit durchgehender Nano-/Mikrostruktur. Sie stellen ihn in Nature Scientific Reports vor. (DOI: 10.1038/s41598-017-15287-8)

In der Natur ist das Phänomen vor allem bei Lotuspflanzen bekannt: Wassertropfen perlen von der Blattoberfläche einfach ab. Diesen Lotuseffekt ahmen...

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

IfBB bei 12th European Bioplastics Conference mit dabei: neue Marktzahlen, neue Forschungsthemen

22.11.2017 | Veranstaltungen

Zahnimplantate: Forschungsergebnisse und ihre Konsequenzen – 31. Kongress der DGI

22.11.2017 | Veranstaltungen

Tagung widmet sich dem Thema Autonomes Fahren

21.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Bakterien als Schrittmacher des Darms

22.11.2017 | Biowissenschaften Chemie

Ozeanversauerung schädigt Miesmuscheln im Frühstadium

22.11.2017 | Biowissenschaften Chemie

Die gefrorenen Küsten der Arktis: Ein Lebensraum schmilzt davon

22.11.2017 | Geowissenschaften