Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Erfolgreiche erste Beobachtungen des Galaktischen Zentrums mit GRAVITY

23.06.2016

Forschungsinstrument für Schwarze Löcher arbeitet nun mit den vier VLT-Hauptteleskopen

Ein Team europäischer Astronomen hat mit dem neuen GRAVITY-Instrument am Very Large Telescope der ESO erstaunliche Beobachtungen des Zentrums der Milchstraße machen können, indem es zum ersten Mal das Licht aller vier 8,2-Meter-Hauppteleskope vereint hat.


Diese künstlerische Darstellung zeigt die Umlaufbahn von Sternen um das supermassereiche Schwarze Loch im Zentrum der Milchstraße. Im Jahr 2018 wird einer dieser Sterne, S2, sehr nah am Schwarzen Loch vorbeiziehen. Dieses Ereignis stellt die beste Möglichkeit dar, die Effekte sehr starker Gravitation zu untersuchen und in naher Zukunft die Vorhersagen der Einsteinschen Allgemeinen Relativitätstheorie zu testen.

Das GRAVITY-Instrument am Interferometer des Very Large Telescope der ESO ist das leistungsstärkste existierende Instrument für die Positionsmessung dieser Sterne. Erfolgreich getestet wurde es am S2-Stern im Sommer 2016. Die Umlaufbahn von S2 ist in Rot hervorgehoben und die Position des zentralen Schwarzen Lochs mit einem roten Kreuz gekennzeichnet.

Herkunftsnachweis: ESO/L. Calçada

Diese Ergebnisse liefern einen ersten Eindruck davon, welche bahnbrechende Forschung in Zukunft mit GRAVITY möglich sein wird, wenn es das extrem starke Gravitationsfeld nahe des zentralen supermassereichen Schwarzen Lochs untersuchen und die Einsteinsche Allgemeine Relativitätstheorie testen wird.

Das GRAVITY-Instrument arbeitet nun mit den vier 8,2-Meter Unit Telescopes des Very Large Telescope (VLT) der ESO zusammen. Erste Testergebnisse lassensich bereits erahnen, dass das Instrument in Zukunft auf Weltklasse-Niveau arbeiten wird.

GRAVITY ist Teil des VLT-Interferometers. Indem es das Licht der vier Teleskopen vereint, kann es dieselbe räumliche Auflösung und Präzision in der Positionsmessung erreichen wie ein Teleskop mit einem Durchmesser von bis zu 130 Metern. Die Zunahme des Auflösungsvermögen und der Positionsgenauigkeit – die dem Faktor 15 gegenüber der einzelnen 8,2-Meter VLT Unit Telescopes entspricht – machen es GRAVITY möglich, erstaunlich genaue Messungen von astronomischen Objekten zu machen.

Eines der Hauptziele von GRAVITY besteht darin, detaillierte Beobachtungen der Umgebung des 4 Millionen Sonnenmassen schweren Schwarzen Lochs im Zentrum der Milchstraße durchzuführen [1]. Zwar sind Position und Masse des Schwarzen Lochs seit 2002 bekannt, nachdem man präzise Messungen der Bewegungen der das Schwarze Loch umgebenden Sterne durchgeführt hatte, jedoch wird GRAVITIY es Astronomen in Zukunft ermöglichen, das Gravitationsfeld um das Schwarze Loch in bisher ungekanntem Detail zu untersuchen, wodurch es einen einzigartigen Test der Einsteinschen Allgemeinen Relativitätstheorie ermöglicht.

In dieser Hinsicht sind bereits die ersten Messungen mit GRAVITY sehr spannend. Das GRAVITY-Team [2] hat mit dem Instrument den Stern S2 beeobachtet, der das Schwarze Loch im Zentrum unserer Galaxis in nur 16 Jahren umrundet. Diese Tests haben eindrücklich die Empfindlichkeit von GRAVITY gezeigt, da das Instrument in der Lage war, diesen lichtschwachen Stern mit einer Beobachtungszeit von nur wenigen Minuten zu erkennen.

Das Team wird bald imstande sein, sehr präzise Positionen des umkreisenden Sterns zu erreichen, was vergleichbar ist mit der Positionsmessung eines Gegenstands auf dem Mond mit einer Präzision im Zentimeter-Bereich. Das wird dem Team die Klärung der Frage ermöglichen, ob die Bewegung um das Schwarze Loch den Vorhersagen der Einsteinschen Allgemeinen Relativitätstheorie folgt – oder auch nicht. Die neuen Beobachtungen zeigen, dass das Galaktische Zentrum hierfür geeignet ist, wie kein anderer Ort.

Frank Eisenhauer vom Max-Planck-Institut für extraterrestrische Physik in Garching, der leitende Wissenschaftler für GRAVITY, ist begeistert: „Es war ein großartiger Moment für das ganze Team, als sich das Licht des Sterns zum ersten Mal überlagerte – nach acht Jahren harter Arbeit. Zuerst stabilisierten wir aktiv die Interferenz an einem hellen nahegelegenen Stern, und nur wenige Minuten später konnten wir tatsächlich die Interferenz des schwachen Sterns sehen – wir haben es geschafft!“ Auf den ersten Blick haben weder der Referenzstern noch der umkreisende Stern massereiche Begleiter, die Beobachtungen und Auswertung erschweren würden. „Sie sind ideale Probekörper“, erklärt Eisenhauer.

Dieses erste Indiz auf Erfolg kommt genau richtig: Im Jahr 2018 wird der Stern S2 dem Schwarzen Loch am nächsten sein, in einer Entfernung von nur 17 Lichtstunden und mit einer Geschwindigkeit von fast 30 Millionen Stundenkilometern, oder 2,5 % der Lichtgeschwindigkeit. In dieser Entfernung werden die Effekte aufgrund der Allgemeinen Relativität am ausgeprägtesten sein, wodurch die Beobachtungen von GRAVITY dann das wichtigste Ergebnis liefern werden [3]. Diese Möglichkeit wird sich innerhalb der darauffolgenden 16 Jahre nicht mehr wiederholen.

Endnoten

[1] Das Zentrum der Milchstraße, unserer Heimatgalaxie, befindet sich am Himmel im Sternbild Schütze (lat. Sagittarius) und ist ungefähr 25-000 Lichtjahre von der Erde entfernt.

[2] Das GRAVITY-Konsortium besteht aus dem Max-Planck-Institut für extraterrestrische Physik (MPE), dem Max-Planck-Institut fürAstronomie (MPIA), LESIA des Pariser Observatoriums und IPAG der Université Grenoble Alpes/CNRS, der Universität Köln, dem Centro Multidisciplinar de Astrofísica Lissabon und Porto (SIM) und der ESO.

[3] Das Team wird, zum ersten Mal, in der Lage sein, zwei relativistische Effekte auf einen Stern zu messen, der ein massereiches Schwarzen Loch umkreist – der Gravitations-Rotverschiebung und der Präzession des Perizentrums. Die Rotverschiebung tritt auf, da Licht vom Stern sich entgegen des starken Gravitationsfeldes des massereichen Schwarzen Lochs ausbreiten muss, um in das Universum entkommen zu können. Währenddessen verliert es Energie, was sich in einer Rotverschiebung des Lichtes äußert. Der zweite Effekt betrifft die Umlaufbahn des Sterns und führt zu einer Abweichung von einer perfekten Ellipse. Die Richtung der Ellipse rotiert um etwa ein halbes Grad in der Umlaufebene, wenn der Stern nah am Schwarzen Loch vorbeikommt. Derselbe Effekt ist für die Umlaufbahn des Merkurs um die Sonne beobachtet worden, bei der er pro Umlauf etwa 6500-mal schwächer ist als in der extremen Umgebung eines Schwarzen Lochs. Jedoch ist dieser Effekt aufgrund der größeren Entfernung im Galaktischen Zentrum schwieriger zu beobachten als im Sonnensystem.

Weitere Informationen

Die Europäische Südsternwarte (engl. European Southern Observatory, kurz ESO) ist die führende europäische Organisation für astronomische Forschung und das wissenschaftlich produktivste Observatorium der Welt. Getragen wird die Organisation durch 16 Länder: Belgien, Brasilien, Dänemark, Deutschland, Finnland, Frankreich, Großbritannien, Italien, die Niederlande, Österreich, Polen, Portugal, Spanien, Schweden, die Schweiz und die Tschechische Republik. Die ESO ermöglicht astronomische Spitzenforschung, indem sie leistungsfähige bodengebundene Teleskope entwirft, konstruiert und betreibt. Auch bei der Förderung internationaler Zusammenarbeit auf dem Gebiet der Astronomie spielt die Organisation eine maßgebliche Rolle. Die ESO verfügt über drei weltweit einzigartige Beobachtungsstandorte in Chile: La Silla, Paranal und Chajnantor. Auf dem Paranal betreibt die ESO mit dem Very Large Telescope (VLT) das weltweit leistungsfähigste Observatorium für Beobachtungen im Bereich des sichtbaren Lichts und zwei Teleskope für Himmelsdurchmusterungen: VISTA, das größte Durchmusterungsteleskop der Welt, arbeitet im Infraroten, während das VLT Survey Telescope (VST) für Himmelsdurchmusterungen ausschließlich im sichtbaren Licht konzipiert ist. Die ESO ist einer der Hauptpartner bei ALMA, dem größten astronomischen Projekt überhaupt. Auf dem Cerro Armazones unweit des Paranal errichtet die ESO zur Zeit das European Extremely Large Telescope (E-ELT) mit 39 Metern Durchmesser, das einmal das größte optische Teleskop der Welt werden wird.

Die Übersetzungen von englischsprachigen ESO-Pressemitteilungen sind ein Service des ESO Science Outreach Network (ESON), eines internationalen Netzwerks für astronomische Öffentlichkeitsarbeit, in dem Wissenschaftler und Wissenschaftskommunikatoren aus allen ESO-Mitgliedsländern (und einigen weiteren Staaten) vertreten sind. Deutscher Knoten des Netzwerks ist das Haus der Astronomie in Heidelberg.

Links

Kontaktinformationen

Carolin Liefke
ESO Science Outreach Network - Haus der Astronomie
Heidelberg, Deutschland
Tel: 06221 528 226
E-Mail: eson-germany@eso.org

Frank Eisenhauer
GRAVITY Principal Investigator, Max Planck Institute for Extraterrestrial Physics
Garching, Germany
Tel: +49 (89) 30 000 3563
E-Mail: eisenhau@mpe.mpg.de

Richard Hook
ESO Public Information Officer
Garching bei München, Germany
Tel: +49 89 3200 6655
Mobil: +49 151 1537 3591
E-Mail: rhook@eso.org

Hannelore Hämmerle
Public Information Officer, Max Planck Institute for Extraterrestrial Physics
Garching, Germany
Tel: +49 (89) 30 000 3980
E-Mail: hannelore.haemmerle@mpe.mpg.de

Connect with ESO on social media

Dies ist eine Übersetzung der ESO-Pressemitteilung eso1622.

Dr. Carolin Liefke | ESO-Media-Newsletter

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neue Perspektiven durch gespiegelte Systeme
05.12.2016 | Friedrich-Schiller-Universität Jena

nachricht Waschen für die Mikrowelt – Potsdamer Physiker entwickeln lichtempfindliche Seife
02.12.2016 | Universität Potsdam

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Wie sich Zellen gegen Salmonellen verteidigen

05.12.2016 | Biowissenschaften Chemie

Fraunhofer WKI koordiniert vom BMEL geförderten Forschungsverbund zu Zusatznutzen von Dämmstoffen aus nachwachsenden Rohstoffen

05.12.2016 | Förderungen Preise

Höhere Energieeffizienz durch Brennhilfsmittel aus Porenkeramik

05.12.2016 | Energie und Elektrotechnik