Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Erfolgreiche Asteroidenjagd im Klassenzimmer

31.12.2010
Das Pan-STARRS 1 Teleskop auf Hawaii, konzipiert als leistungsfähigster Asteroidenjäger der Welt, und Schüler in Deutschland und den USA haben acht Wochen lang gemeinsam nach Asteroiden gesucht – Felsbrocken mit Durchmessern zwischen einigen und einigen hundert Kilometern, die durch unser Sonnensystem fliegen. Jetzt, nach Abschluss des Projekts, haben die Schüler interessante Beobachtungen vorzuweisen: Bestätigungsbeobachtungen für vier „Near-Earth Objects“ (die der Erde vergleichsweise nahe kommen) und die Entdeckung von mehr als 170 Kandidatenobjekten, bei denen es sich um bislang unbekannte Asteroiden handeln könnte.

Wenn das Pan-STARRS 1-Teleskop (PS1), eines der leistungsfähigsten Durchmusterungsteleskope, die derzeit weltweit in Betrieb sind, den Nachthimmel durchsucht, dann schießt seine 1400-Megapixel-Kamera mehr als 500 Bilder pro Nacht. In der Zeit zwischen dem 25. Oktober und dem 21. Dezember 2010 landeten die dabei aufgenommenen Daten nicht nur auf den Computern der professionellen Astronomen, sondern auch in Klassenzimmern in den USA und Deutschland.


Das Pan-STARRS 1-Teleskop (PS1) auf Hawaii
Bild: Rob Ratkowski

Dort haben Schüler die Bilder genutzt, um die Bahnen bereits bekannter Asteroiden zu verfolgen und zu bestätigen, und um Kandidatenobjekte für bislang unbekannte Asteroiden zu entdecken. Ließ das Wetter in Hawaii keine Beobachtungen zu, kamen alternativ Daten eines Teleskops des Astronomical Research Institute (ARI) in Westfield im US-Bundesstaat Illinois zum Einsatz.

Über das Internet erhielten die teilnehmenden Schülergruppen eine Vielzahl von Reihenaufnahmen. Jede Reihenaufnahme zeigte eine bestimmte Himmelsregion, aufgenommen im Abstand von einer Stunde. In dieser Zeit würde sich ein Asteroid des so genannten Hauptgürtels relativ zu den fernen Hintergrundsternen merklich (in den vorliegenden Bildern um rund 100 Pixel) bewegen. Die Schüler durchsuchten die Bilder nach Objekten, bei denen sich diese Art von Bewegung zeigte, untersuchten, ob es sich dabei vielleicht um Artefakte handeln konnte, und meldeten ihre Ergebnisse an die International Astronomical Search Collaboration, die das Projekt koordiniert.

Bei einigen der interessantesten Beobachtungsobjekte handelte es sich um so genannte „Near-Earth Objects“ (NEOs): Asteroiden oder ähnliche Objekte, deren Umlaufbahnen sie ins innere Sonnensystem führen. Einige der NEOs könnten sich als potenzielle „Killerasteroiden“ auf Kollisionskurs mit unserem Heimatplaneten erweisen; solche Gefahrenquellen ausfindig zu machen ist eines der Hauptziele des PS1-Teleskops. Um die Umlaufbahn eines NEOs vorhersagen zu können, sind mindestens zwei Beobachtungen zu unterschiedlichen Zeiten nötig. Einige der Zweitbeobachtungen haben die Schüler im Rahmen dieses Projekts beigetragen. Katharina Stöckler (17 Jahre, 11. Schuljahr [Kursstufe 1] am Gymnasium Neckargemünd) erklärt: „Wir konnten eine ‚NEO confirmation’, eine Bestätigungsbeobachtung für den Asteroiden 2010 UR7 durchführen. Solche Beobachtungen sind äußerst wichtig, da sie zum einen die Existenz der potenziellen Gefahrenquelle bestätigen und es zum anderen ermöglichen, die Umlaufbahn des Asteroiden mit größerer Genauigkeit zu bestimmen.“ Im Rahmen des Projekts kam es noch zu drei weiteren solchen „Confirmations“. Außerdem gelangen 64 Dritt- oder Viertbeobachtungen von NEOs, die den mit der Erforschung dieser Objekte befassten Wissenschaftlern ebenfalls wichtige Daten liefern.

Im Laufe des Projekts fanden die Schüler in den Pan-STARRS-Daten außerdem 151 Kandidaten für bislang unentdeckte Asteroiden, die im Asteroidengürtel zwischen Mars und Jupiter um die Sonne kreisen (sowie 20 weitere Kandidaten in den Daten des ARI/Westfield-Teleskops). Schüler des Benedikt-Stattler-Gymnasiums in Bad Kötzting in Bayern entdeckten in einer einzigen Nacht ganze sieben solcher Kandidatenobjekte. Um bestätigt zu werden und provisorische Identifikationsnummern (wie das erwähnte „2010 UR7“) zu erhalten, müssen die Objekte allerdings noch ein weiteres Mal beobachtet werden. Bei einer Reihe davon dürfte dies gar nicht erst gelingen; andere könnten sich doch noch als bereits bekannte Asteroiden herausstellen. Kommt es aber zur Bestätigung und wird ein Objekt dann über mindestens einen gesamten Umlauf (typischerweise 3 bis 6 Jahre) hinweg verfolgt, bekommt es eine endgültige Identifikationsnummer und die Entdecker haben das Recht, einen Namen für den Asteroiden vorzuschlagen.

Dr. Patrick Miller von der Hardin-Simmons-Universität in Abilene, Texas, Direktor der International Astronomical Search Collaboration, sagt: „Pan-STARRS-Bilder enthalten eine enorme Menge an Information und geben den Schülern die Chance, hunderte von neuen Entdeckungen zu machen. Mit den Daten, die Pan-STARRS liefert, könnten wir unsere Kampagnen auf tausend Schulen und Colleges, und zehntausende von Schülern und Studenten, ausdehnen – das sind für uns, und auch für die beteiligten Bildungseinrichtungen, aufregende Perspektiven!“

Dr. William Burgett, Pan-STARRS-Projektmanager, ergänzt: „Es ist für uns sehr aufregend, dass wir ein Forschungsinstrument der Spitzenklasse – eben Pan-STARRS – und echte Forschungsdaten nutzen können, um Schülern einen Zugang zur Astronomie zu schaffen. Wir hoffen, dass dies nur der erste Schritt eines Projekts ist, mit dem wir später weltweit hunderte von Schulen zu erreichen hoffen.“

Kontakt

Carolin Liefke
Haus der Astronomie
MPIA Campus, Königstuhl 17
D-69117 Heidelberg
Tel.: (06221) 528 226
liefke@mpia.de
Dr. Hannelore Hämmerle
Max-Planck-Institut für extraterrestrische Physik
Giessenbachstraße
85748 Garching
Tel.: (089) 30 000 3980
hannelore.haemmerle@mpe.mpg.de
Dr. Patrick Miller (IASC-Direktor)
Department of Mathematics
Holland School of Science & Mathematics
Hardin-Simmons University
Abilene, Texas 79698
iascsearch@hsutx.edu
Hintergrundinformationen
Die Pan-STARRS–IASC-Kampagne nutzt Daten des Pan-STARRS 1 (PS1) Teleskops, eines Teleskop mit 1,8 Metern Spiegeldurchmessern auf dem Haleakala in Hawaii, das den Himmel systematisch nach Objekten absucht, die sich entweder bewegen oder ihre Helligkeit mit der Zeit verändern. Am PS1 ist die größte Digitalkamera der Welt angebracht, eine astronomische Spezialanfertigung mit 1400 Megapixeln; die von Pan-STARRS jede Nacht gesammelte Datenmenge entspricht dem Fassungsvermögen von rund 1000 DVDs. Im Laufe der nächsten drei Jahre ist zu erwarten, dass PS1 rund 100,000 Asteroiden entdeckt und prüft, ob sich einer oder mehrere davon auf Kollisionskurs mit der Erde befinden. Außerdem wird das Teleskop fünf Milliarden Sterne und 500 Millionen Galaxien erfassen und dabei für diejenigen 75 Prozent des Nachthimmels, die von Hawaii aus sichtbar sind, die bislang vollständigste digitale Himmelskarte erstellen. PS1 ist der Prototyp für das größere PS4-Teleskop, das ein viermal so großes Lichtsammelvermögen haben und auf dem Mauna Kea aufgestellt werden soll.

Pan-STARRS-Kontakt für die IASC-Pan-STARRS-Asteroidensuche mit Schülern ist der Projektmanager von PS1, William Burgett (Institut für Astronomie der Universität Hawaii). Das Projekt wurde ermöglicht durch die Unterstützung des PS1 Science Consortium und durch die Bemühungen von Larry Denneau (Institut für Astronomie der Universität Hawaii), Matt Holman (Harvard-Smithsonian Center for Astrophysics), Robert Jedicke, Nick Kaiser, Gene Magnier und Richard Wainscoat (alle Institut für Astronomie der Universität Hawaii).

Die International Astronomical Search Collaboration (IASC, ausgesprochen als “Isaac”) ist ein internationales Outreach-Programm für weiterführende Schulen und Colleges, das den teilnehmenden Bildungseinrichtungen kostenlose angeboten wird. Seit Gründung des Programms im Herbst 2006 haben mehr als 200 Schulen – und damit tausende von Schülern – pro Jahr an den Suchkampagnen teilgenommen. Die Teilnehmer kommen aus mehr als 30 Ländern auf fünf Kontintenten. Über das Internet erhalten die teilnehmenden Schüler astronomische Bilder, die sie dann mit Hilfe der Software Astrometrica auswerten, um neue Asteroiden zu entdecken und die Eigenschaften bekannter und neu entdeckter Asteroiden zu bestimmen. Bis dato haben die Schüler mehr als 300 bislang unbekannte Asteroiden entdeckt; sieben davon haben eine endgültige Identifikationsnummer vom Minor Planet Center in Harvard erhalten, der offiziellen Stelle für die Asteroidenerfassung. Die Schüler haben außerdem tausende von Messungen an NEOs durchgeführt, die potenziell eine Gefahrenquelle für unseren Heimatplaneten darstellen können. Hauptquartier des Projekts ist die Hardin-Simmons-Universität (Abilene, Texas); weitere IASC-Partner sind die Lawrence Hall of Science (University of California at Berkeley), des Astronomical Research Institute (Westfield, Illinois), der Global Hands-On Universe Association (Lisbon, Portugal), der Tarleton State University (Stephenville, Texas), desSierra Stars Observatory Network (Markleeville, California), und von Astrometrica (Linz, Austria). Die jetzige Kampagne nutzt das Netzwerk der Global Hands-on Universe (GHOU)-Kollaboration, eines Zusammenschlusses von Wissenschaftlern und Lehrern, die es Schülern ermöglichen will, das Universum mit Hilfe der Werkzeuge der Mathematik, der Naturwissenschaft und der Technik selbst zu erforschen. GHOU hat bislang 30 Länder erreicht und rund 5000 Lehrer aus aller Welt darin ausgebildet, moderne Astronomie ins Klassenzimmer zu holen.

Die deutschen Schulen, die an der Pan-STARRS-IASC-Kampagne teilnehmen, werden koordiniert und unterstützt vom Haus der Astronomie in Heidelberg (in Zusammenarbeit mit dem Max-Planck-Institut für Astronomie in Heidelberg und der Starkenburg-Sternwarte Heppenheim), dem Max-Planck-Institut für Extraterrestrische Physik in Garching und der Technischen Universität München.

Die teilnehmenden Schülergruppen sind (jeweils deutsche Schulen mit US-amerikanischen Partnern):

1. Luitpold-Gymnasium, München
Ranger High School, Ranger, Texas
2. Christoph-Probst-Gymnasium, München
May High School, May, Texas
3. Benediktinergymnasium, Ettal
Vernon High School, Vernon, Texas
4. Benedikt-Stattler-Gymnasium, Bad Kötzting
Bullard High School, Bullard, Texas
5. Werdenfels-Gymnasium, Garmisch-Partenkirchen
Colleyville Heritage High School, Colleyville, Texas
6. St. Anna-Gymnasium, München
El Campo High School, El Campo, Texas
7. Helmholtz-Gymnasium, Heidelberg
Tarrant County College, Hurst, Texas
8. Gymnasium Neckargemünd, Neckargemünd
Brookhaven College, Farmers Branch, Texas
9. Lessing-Gymnasium, Lampertheim
Madisonville High School, Madisonville, Texas und Baldwin High School, Wailuku, Hawaii

10. Life Science Lab, Heidelberg und Collin County College, Plano, Texas

Das Pan-STARRS-Projekt wird vom Institut für Astronomie der Universität Hawaii geleitet und macht sich die einzigartige Kombination von überragenden Beobachtungsbedingungen und technischem und wissenschaftlichen Know-how zunutze, die Hawaii bietet. Die Entwicklung des Beobachtungssystems wurde von der US Air Force finanziert. Die astronomischen Beobachtungsprojekte der PS1 Surveys wurden ermöglicht durch Beiträge des Instituts für Astronomie der Universität Hawaii, des Pan-STARRS-Project Office, der Max-Planck-Gesellschaft mit ihren teilnehmenden Instituten, dem Max-Planck-Institut für Astronomie in Heidelberg und dem Max-Planck-Institut für Extraterrestrische Physik in Garching, der Johns Hopkins-Universität, der Universität Durham, der Universität Edinburgh, der Queens-Universität Belfast, des Harvard-Smithsonian Center for Astrophysics, des Los Cumbres Observatory Global Telescope Network, Incorporated, and the National Central University of Taiwan und der National Aeronautics and Space Administration (NASA, Grant No. NNX08AR22G der Planetary Science Division des NASA Science Mission Directorate). Alle in dieser Pressemitteilung geäußerten Meinungen, Ergebnisse, Schlussfolgerungen und Empfehlungen sind die der Autoren und geben nicht notwendigerweise die Sicht der NASA wieder.

„NEO Confirmations“ (Zweitbeobachtungen für Near-Earth Objects, jeweils Objektnummer, Schule, Beobachtungsdatum):

2010 UR7 Gymnasium Neckargemünd, 30. Oktober 2010
2010 UX4 Gymnasium Neckargemünd, 30. Oktober 2010
2010 UV7 Tarrant County College, Texas, 31. Oktober 2010
2010 UK8 Madisonville High School, Texas, 31. Oktober 2010

Dr. Markus Pössel, | Max-Planck-Institut
Weitere Informationen:
http://www.mpia.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Scharfe Röntgenblitze aus dem Atomkern
17.08.2017 | Max-Planck-Institut für Kernphysik, Heidelberg

nachricht Optische Technologien für schnellere Computer / „Licht“ mit Wespentaille
16.08.2017 | Universität Duisburg-Essen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie