Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Entwicklung der weltweit ersten ultraflachen, bipolaren Meta-Linse gelungen

19.03.2013
Entwicklung der weltweit ersten ultraflachen, bipolaren Meta-Linse gelungen – Material aus Glas und Gold 2.000 Mal dünner als menschliches Haar - Nutzung in Photonik bei optischen Schaltkreisen und Leuchtdioden

Prof. Dr. Thomas Zentgraf, Leiter der Arbeitsgruppe „Ultraschnelle Nanophotonik“ am Department Physik der Universität Paderborn, und Dr. Shuang Zhang, Leiter des Teams an der Universität Birmingham, haben gemeinsam die weltweit erste ultraflache Linse für sichtbares Licht entwickelt.


Doktorand Holger Mühlenbernd (links) und Prof. Dr. Thomas Zentgraf im Reinraum des Optoelektronik-Gebäudes der Universität Paderborn.
Foto (Universität Paderborn, Department Physik)

Im Gegensatz zu herkömmlichen geschliffenen Glaslinsen ist die neue Linse flach und extrem dünn. Sie ist nur 20 bis 30 Nanometer (nm) dick, also 0,00002 bis 0,00003 mm. Ein menschliches Haar ist vergleichsweise etwa 2.000 Mal dicker.

Die Linse besteht aus einem neuartigen so genannten Metamaterial, einer Kombination aus Glas und Gold und vergrößert bzw. verkleinert Objekte in Abhängigkeit zur Art des einfallenden Lichts, d.h. zu seinem Polarisationszustand. „Die Meta-Linse zeigt, welches Potenzial mit neuartigen optischen Materialien erschlossen werden kann, um Licht sehr effektiv gezielt zu beeinflussen,“ sagt Thomas Zentgraf: „Es eröffnet flexible neue Möglichkeiten zur Erzeugung spezieller Materialeigenschaften, da die Strukturierung der Oberfläche beliebig verändert werden kann.“

Die Meta-Linse kann in Bauteilen für die Photonik genutzt werden und ermöglicht aufgrund ihrer flachen Form eine sehr kompakte Bauweise, z. B. bei integrierten optischen Schaltkreisen oder bei der Strahlformung des Lichts von Leuchtdioden. Weitere Anwendungen sind in der Bio-Physik denkbar, z. B. für die so genannte „optische Pinzette“. Bei dieser Anwendung kann die Meta-Linse ein spezielles Lichtstrahlprofil erzeugen, mit dem Objekte „gefangen“ und festgehalten werden können. Und für zukünftige Entwicklungen eines Quantencomputers könnte die Linse die Funktionsweise der Transistoren übernehmen, wenn sie quasi als „Licht-Schalter“ eingesetzt wird.“

Das Metamaterial der neuen Linse besteht aus einer künstlich hergestellten, mikroskopisch feinen Struktur. Auf einem Glasträger werden mittels Elektronenstrahllithografie 100 bis 200 nm lange Goldstäbchen erzeugt. Je nachdem, wie diese Stäbchen ausgerichtet sind, beeinflussen sie das auftreffende Licht wie kleine Antennen lokal unterschiedlich. Damit kann der Effekt einer normalen Streu- oder Sammellinse erzielt werden. Trifft rechts zirkular polarisierendes Licht auf die Meta-Linse, wirkt sie fokussierend. Bei links zirkular polarisierendem Licht wird der Lichtstrahl gestreut, also defokussiert. Die Eigenschaft der Meta-Linse (fokussierend oder defokussierend) kann somit durch einfaches Verändern des Schwingungszustandes des Lichts verändert werden und ist nicht wie bei einer klassischen Linse fest vorgegeben.

Da die Größe der Goldstäbchen in der Linse jeweils auf die Farbe, also die Wellenlänge des verwendeten Lichts abgestimmt sein muss, sind die Strukturen auf der Linse entsprechend klein. „Wir haben am Ende des Spektrums des sichtbaren Lichts bei ca. 700 nm getestet“, so Thomas Zentgraf: „Hier bewegen wir uns an der Grenze des zur Zeit technisch Machbaren mit der Elektronenstrahllithografie, aber auch das wird sich entwickeln.“

Prof. Dr. Thomas Zentgraf leitet am Department Physik der Universität Paderborn die Arbeitsgruppe „Ultraschnelle Nanophotonik“ und ist Mitglied der Zentralen Wissenschaftlichen Einrichtung „Center of Optoelectronics and Photonics Paderborn (CeOPP)“. Seine Arbeitsgruppe beschäftigt sich mit der Entwicklung von künstlichen optischen Materialien sowie neuen Konzepten zur Beeinflussung der Lichtausbreitung. Die Originalpublikation im Internet: http://www.nature.com/ncomms/journal/v3/n11/full/ncomms2207.html

Kontakt:
Dr. Marc Sacher, Universität Paderborn, Department Physik,
Tel.: 05251/60-2736, Marc.Sacher@upb.de

Tibor Werner Szolnoki | idw
Weitere Informationen:
http://www.uni-paderborn.de
http://www.nature.com/ncomms/journal/v3/n11/full/ncomms2207.html

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Speicherdauer von Qubits für Quantencomputer weiter verbessert
09.12.2016 | Forschungszentrum Jülich

nachricht Elektronenautobahn im Kristall
09.12.2016 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie