Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Entsteht Supraleitung doch ganz anders?

23.02.2009
Ergebnisse vom Paul Scherrer Institut stellen gängige Theorien der Hochtemperatursupraleitung in Frage

Auch wenn der Mechanismus hinter der Hochtemperatursupraleitung zu den grossen Rätseln moderner physikalischer Forschung gehört, schien es einige sichere Erkenntnisse über die Natur dieses Phänomens zu geben. Forscher des Paul Scherrer Instituts (PSI) und der TU Dresden haben nun gezeigt, dass sich die seit rund einem Jahr bekannten Eisen-basierten Supraleiter nicht an diese Regeln halten.

Damit ist nicht nur gezeigt, dass gängige Theorien revidiert werden müssen - die Ergebnisse könnten auch Wege zur Erzeugung von effizienteren Hochtemperatursupraleitern aufzeigen. Ihre Untersuchungen haben die Forscher vor allem mit Myonen durchgeführt - instabilen Elementarteilchen, die am Teilchenbeschleuniger des PSI erzeugt werden und detaillierte Informationen über Magnetfelder im Inneren von Materialien liefern. Über ihre Ergebnisse berichten die Forscher am 22.02.09 in der Online-Ausgabe der Fachzeitschrift Nature Materials.

"Alte und neue" Hochtemperatursupraleiter

Vor rund zwanzig Jahren wurden die ersten Hochtemperatursupraleiter entdeckt: kompliziert aufgebaute Substanzen auf Kupfer-Basis, die elektrischen Strom ganz ohne Widerstand leiten konnten - und das bei deutlich höheren Temperaturen als die schon länger bekannten klassischen Supraleiter. Seit Anfang 2008 ist eine neue Klasse von Hochtemperatursupraleitern auf Eisenbasis bekannt, die den bisher bekannten in vielfacher Weise ähnelt. So haben alle Substanzen gemeinsam, dass ihre Kristallstruktur in Schichten aufgebaut ist und der Strom in diesen Schichten fliesst. Gemeinsam ist auch, dass sie aus einer nicht-supraleitenden Ausgangssubsubstanz entstehen, wenn man bestimmte Atome durch die eines anderen Elements ersetzt und so gezielt die Menge an elektrischen Ladungen verändert.

Plötzlicher Wandel

Der Ausgangsstoff für die Kupfer-Supraleiter ist ein magnetischer Isolator, der bei wachsendem Gehalt an Fremdatomen zunächst allmählich seinen Magnetismus verliert und schliesslich supraleitend wird. Dieser Ablauf galt bislang als Standard für die Vorgänge in Hochtemperatursupraleitern und war die Basis der gängigen Theorien zur Entstehung des Effekts. Die Forscher zeigen nun, dass es auch anders geht. So ist der Ausgangsstoff der neuen Eisen-Supraleiter ein Metall. Vor allem wechseln sie aber bei einer bestimmten Menge von Fremdatomen schlagartig vom magnetischen zum supraleitenden Zustand. Das heisst, dass der magnetische Zustand die Supraleitung unterdrückt, die sich sofort entfalten kann sobald der magnetische Zustand zerstört wird. Dabei verschwindet mit dem Magnetismus auch gleichzeitig eine Verzerrung des Kristallgitters.

"Wenn man diese Verzerrung und den damit gekoppelten Magnetismus gezielt unterdrücken könnte, wäre es wahrscheinlich möglich, die Supraleitung bei höheren Temperaturen zu erzeugen." erläutert der Physiker Hubertus Luetkens die Konsequenzen seiner Forschung. "Die erwähnte strukturelle Verzerrung kann zum Beispiel durch Einbringen von geeigneten Fremdatomen, aber auch durch das Anlegen hoher externer Drücke verhindert werden." ergänzt sein Kollege Hans-Henning Klauß von der TU Dresden. Solche Experimente mit hohem Druck werden zur Zeit am PSI durchgeführt.

Elementarteilchen enthüllen Magnetismus und Supraleitung

Die Ergebnisse haben die Forscher vor allem mit Hilfe von Myonen gewonnen. Diese instabilen Elementarteilchen werden am Teilchenbeschleuniger des Paul Scherrer Instituts erzeugt und gezielt in das Innere der untersuchten Substanz eingebracht. Dort agieren sie wie mikroskopisch kleine Magnetfeldsonden, die magnetische Vorgänge und Supraleitung im Inneren des Materials zeigen können. "Man kann auch mit einer Messung der Leitfähigkeit feststellen, ob eine Substanz supraleitend geworden ist. Aber nur Myonen zeigen, ob die Supraleitung auf einzelne Bereiche beschränkt ist oder das ganze Material erfasst hat" erklärt Luetkens einen Vorteil der Myonenexperimente. Myonen für solche Versuche sind weltweit nur an wenigen Orten verfügbar.

Das Paul Scherrer Institut entwickelt, baut und betreibt grosse und komplexe Forschungsanlagen und stellt sie der nationalen und internationalen Forschungsgemeinde zur Verfügung. Eigene Forschungsschwerpunkte sind Festkörperforschung und Materialwissenschaften, Elementarteilchenphysik, Biologie und Medizin, Energie- und Umweltforschung. Mit 1300 Mitarbeitenden und einem Jahresbudget von rund 260 Mio. CHF ist es das grösste Forschungsinstitut der Schweiz.

An der Technischen Universität Dresden lernen, lehren und forschen rund 35'000 Studierende und über 400 Professorinnen und Professoren aus vielen Ländern. Materialwissenschaften, Biomaterialien und Nanotechnologie bilden gemeinsam eine von sechs Profillinien in der Forschung, die besonders in der Mathematisch-Naturwissenschaftlichen Fakultät verankert ist.

Kontakt:

Dr. Hubertus Luetkens, Paul Scherrer Institut, Labor für Myonen-Spin-Spektroskopie,
Tel: +41 56 310 4450
E-Mail: hubertus.luetkens@psi.ch
Prof. Dr. Hans-Henning Klauß, Technische Universität Dresden, Institut für Festkörperphysik
Tel: +49 351 463-42125
E-Mail: H.Klauss@physik.tu-dresden.de
Originalveröffentlichung:
The electronic phase diagram of the LaO1-xFxFeAs superconductor
H. Luetkens, H.-H. Klauss, M. Kraken, F. J. Litterst, T. Dellmann, R. Klingeler, C. Hess, R. Khasanov, A. Amato, C. Baines, M. Kosmala, O. J. Schumann, M. Braden, J. Hamann-Borrero, N. Leps, A. Kondrat, G. Behr, J. Werner and B. Büchner

Nature Materials, 22.02.2009, http://dx.doi.org/10.1038/NMAT2397

Dagmar Baroke | idw
Weitere Informationen:
http://www.psi.ch

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Einblicke ins Atom
23.01.2017 | Friedrich-Schiller-Universität Jena

nachricht Flashmob der Moleküle
19.01.2017 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: Textiler Hochwasserschutz erhöht Sicherheit

Wissenschaftler der TU Chemnitz präsentieren im Februar und März 2017 ein neues temporäres System zum Schutz gegen Hochwasser auf Baumessen in Chemnitz und Dresden

Auch die jüngsten Hochwasserereignisse zeigen, dass vielerorts das natürliche Rückhaltepotential von Uferbereichen schnell erschöpft ist und angrenzende...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Mittelstand 4.0 – Mehrwerte durch Digitalisierung: Hintergründe, Beispiele, Lösungen

20.01.2017 | Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

Künftige Rohstoffexperten aus aller Welt in Freiberg zur Winterschule

18.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Innovationen besser messen

23.01.2017 | Förderungen Preise

Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

23.01.2017 | Biowissenschaften Chemie

Einem neuen, effektiven Fertigungsverfahren auf der Spur

23.01.2017 | Förderungen Preise