Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Entfesselte Magnetkraft

23.08.2017

Die Flecken auf der Oberfläche unserer Sonne zeugen von der Aktivität in ihrem Innern

Schon die alten Chinesen haben sie gesehen: dunkle Pünktchen auf der Sonne. Im Teleskop entfalten diese Sonnenflecken eindrucksvolle Details. Und sie sind der Schlüssel zur Aktivität unseres Tagesgestirns, in dem es rumort und brodelt. Lange Zeit wussten die Wissenschaftler nicht, was es mit dem Phänomen auf sich hat.


Spiel der Energien: Mehrere tausend Grad heißes Plasma steigt aus dem Innern der Sonne nach oben, kühlt sich ab und sinkt wieder in die Tiefe. Dort wo starke Magnetfelder das Plasma festhalten, entstehen dunkle Sonnenflecken. Am Rand sind fadenförmige Strukturen zu erkennen. In diesen Bereichen sollten die Felder eigentlich stark genug sein, um Strömungen zu unterbinden, sie müssten daher dunkler erscheinen. Wissenschaftler am Max-Planck-Institut für Sonnensystemforschung konnten nachweisen, dass das Magnetfeld hier stellenweise gelockert ist. Das Plasma zirkuliert und ruft langgezogene, hell leuchtende Strukturen hervor, die sich um ihre Achse zu drehen scheinen.

© Max-Planck-Institut für Sonnensystemforschung, Göttingen / Johann Hirzberger

„Sei ruhig mein Sohn und vertraue Gott. Ich versichere Dir, dass die Flecken nichts anderes sind als Fehler in Deinen Gläsern.“ Der Ingolstädter Jesuitenpater Christoph Scheiner (1573 bis 1650) befand sich in einem Zwiespalt, als er die Zeilen seines Ordensprovinzials las: Hatte nicht Gott die Sonne als reines und makelloses Licht geschaffen? Andererseits wusste Scheiner, dass die schwarzen Regionen auf dem Tagesgestirn keineswegs Fehler im Fernrohr waren. Auch zeitgenössische Forscher wie Galileo Galilei oder Johannes Fabricius beobachteten sie Anfang des 17. Jahrhunderts. Und schon uralte chinesische Chroniken berichten von Sonnenflecken, die sich gelegentlich dem bloßen Auge zeigen.

Was hat es mit diesem Phänomen auf sich? Die Sonne besitzt keine feste Schale. Was Astronomen als „Oberfläche“ bezeichnen, ist jene nur etwa 400 Kilometer dünne Schicht, aus der das für uns sichtbare Licht stammt: die Photosphäre. Der gesamte Sonnenball hat gewaltige Dimensionen. Bei einem Durchmesser von 1,39 Millionen Kilometern fänden 1,3 Millionen Erdkugeln in ihm Platz. Und mit 2000 Quadrillionen Tonnen (eine Zwei mit 27 Nullen!) hat die Sonne die 330000-fache Masse unseres Planeten – im Vergleich zu vielen anderen Sternen ist sie jedoch ein Zwerg.

Die Sonnenflecken scheinen in der Photosphäre zu schwimmen wie schwarze Inseln. Noch im 17. Jahrhundert erkannten die Forscher, dass zumindest die größeren unter ihnen einen dunklen Kern besitzen, die Umbra (von lateinisch: Schatten). Diese Umbra umgibt meist ein hellerer Halbschatten, der Penumbra genannt wird. Die meisten Sonnenflecken sind größer als die Erde, manche Fleckengruppen bringen es auf eine Ausdehnung von mehr als 300.000 Kilometern; das entspricht gut zwei Drittel der Distanz zwischen Erde und Mond.

Im 18. Jahrhundert glaubten selbst ernstzunehmende Wissenschaftler, bei den dunklen Flecken handele es sich um Löcher in der Sonnenatmosphäre, die einen Blick auf die darunterliegende, von fremden Wesen bewohnte feste Oberfläche erlaubten. Später jedoch bestimmten Forscher die Temperatur der Photosphäre zu 5500, die der Umbren zu 4000 Grad Celsius. Diese Differenz lässt die Flecken im Kontrast zur ungestörten Photosphäre merklich dunkler, nahezu schwarz, erscheinen. Warum aber sind sie kühler?

Der Schlüssel zu den Flecken liegt gewissermaßen unter der Haut. Die Sonne ist ein Gasballon, in dessen Zentrum ein Fusionsreaktor bei Temperaturen um die 15 Millionen Grad ständig Wasserstoff in Helium umwandelt. Dabei liefert das solare Kraftwerk in jeder Stunde eine Leistung von 380 Trilliarden Kilowatt. Zwei Mechanismen transportieren sie an die Oberfläche: Strahlung und Konvektion. In der äußeren Konvektionszone – sie macht nicht einmal ein Viertel des Sonnenradius aus – steigen heiße Plasmablasen mit einer durchschnittlichen Geschwindigkeit von 3000 Kilometern pro Stunde in die Photosphäre auf, kühlen sich ab und sinken ein paar Minuten später wieder nach unten. Dieses permanente Blubbern und Brodeln verleiht der Photosphäre eine körnige Struktur. Die einzelnen Körner, Granulen genannt, haben Durchmesser von bis zu 1500 Kilometer. Auf Bildern der Sonne ähnelt diese Granulation einem regelmäßigen Muster von Maiskörnchen.

In Bewegung ist aber nicht nur die Photosphäre. Auch im Innern der Sonne zirkuliert heiße Materie. Dieses Plasma – Gas, das teilweise oder vollständig aus Ionen und Elektronen besteht – ist elektrisch leitend. Die Sonne besitzt ein Magnetfeld, das tief in ihrem Innern entsteht. Welcher Mechanismus die Sonnenflecken hervorbringt, wird noch diskutiert: Ein Szenario geht davon aus, dass Plasma aus einer Tiefe von etwa 200.000 Kilometern durch Konvektion nach oben steigt und die Magnetfeldlinien mit sich zieht wie ein Teelöffel, den man in Honig eintaucht und dann zum Mund führt. Dort, wo die gebündelten Feldlinien schließlich die Oberfläche durchstoßen, verhindern die starken Magnetfelder, dass weiteres heißes Plasma aufsteigt: Ein Sonnenfleck entsteht.

Das Foto zeigt zwei solcher Flecken. Johann Hirzberger vom Max-Planck-Institut für Sonnensystemforschung gewann es mit dem Swedish Solar Telescope (SST) am Observatorium Roque de los Muchachos auf La Palma. Mit einer Öffnung von 98 Zentimetern ist das SST das zweitgrößte Linsenfernrohr der Welt. Der Teleskoptubus ist evakuiert, um Luftturbulenzen zu vermeiden, die das Auflösungsvermögen beeinträchtigen würden. Außerdem gleicht eine adaptive Optik das in der Erdatmosphäre stets vorhandene Flirren aus. Dazu analysiert das Instrument das Bild der Sonne 1000-mal in der Sekunde und passt die Optik entsprechend an. Auf diese Weise liefert das Swedish Solar Telescope Bilder hoher Schärfe.

Auf der Aufnahme sind an den Rändern der Sonnenflecken helle fadenförmige Strukturen zu erkennen. Eigentlich sollten diese ebenfalls dunkel erscheinen, weil die magnetischen Felder stark genug sein müssten, um den Energienachschub zu behindern und die Region zu kühlen. Forscher um Hirzberger haben indes nachgewiesen, dass das lokale Magnetfeld stellenweise gelockert ist. Das Plasma zirkuliert und ruft langgezogene leuchtende Strukturen hervor, die sich um ihre Achse zu drehen scheinen.

Flecken treten häufig in Gruppen auf. Ihre Anzahl ist ein Maß für die Sonnenaktivität – und nicht immer gleich: Durchschnittlich alle elf Jahre leidet der Stern sozusagen unter „Windpocken“, dann bedecken besonders viele Flecken sein gleißendes Antlitz. Das letzte Sonnenmaximum war für Mai 2013 vorhergesagt worden. Dennoch gab es damals nur wenige Flecken, die Sonne scheint derzeit nur langsam in Fahrt zu kommen.

Ansprechpartner

Helmut Hornung, M.A.
Wissenschafts- und Unternehmens-kommunikation

Generalverwaltung der Max-Planck-Gesellschaft, München
Telefon: +49 89 2108-1404

Fax: +49 89 2108-1405
E-Mail: hornung@gv.mpg

Helmut Hornung, M.A. | Generalverwaltung der Max-Planck-Gesellschaft, München
Weitere Informationen:
https://www.mpg.de/sonne/sonnenflecken

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas
19.09.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern
15.09.2017 | Max-Planck-Institut für Quantenoptik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Drohnen sehen auch im Dunkeln

20.09.2017 | Informationstechnologie

Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen

20.09.2017 | Biowissenschaften Chemie

Frühwarnsystem für gefährliche Gase: TUHH-Forscher erreichen Meilenstein

20.09.2017 | Energie und Elektrotechnik