Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die Entdeckung der Verlangsamung

03.02.2012
Pulsare können durch Materie, die von außen auf sie einströmt, nicht nur beschleunigt, sondern auch verlangsamt werden. Das erklärt einige Rätsel.

Pulsare gehören zu den exotischsten, bekannten Himmelskörpern. Sie besitzen Durchmesser von etwa 20 Kilometern, beinhalten aber in etwa die Masse unserer Sonne. Ein würfelzuckergroßes Stück ihrer ultrakompakten Materie würde auf der Erde mehrere hundert Millionen Tonnen wiegen.


Künstlerische Darstellung eines Millisekundenpulsars in einem Doppelsternsystem. Die vom Begleitstern (außerhalb des oberen Bildrandes) überfließende Materie bildet eine Scheibe um den Pulsar, die am inneren Rand von dessen Magnetfeld abgeschnitten wird. © NASA/Goddard Space Flight Center/Dana Berry

Eine Unterklasse von ihnen, die Millisekundenpulsare, wirbeln zudem bis zu einige hundert Mal pro Sekunde um die eigene Achse. Frühere Untersuchungen hatten bei einigen Millisekundenpulsaren zu der paradoxen Schlussfolgerung geführt, dass sie älter als das Universum sind. Der Astrophysiker Thomas Tauris vom Max-Planck-Institut für Radioastronomie und dem Argelander-Institut für Astronomie in Bonn konnte dieses Paradoxon mit Computersimulationen lösen.

Pulsare sind schnell rotierende Neutronensterne. Sie sind Überreste von Sternen, die am Ende ihres Lebens ihren Brennstoff verbraucht haben und deren Zentralbereiche in sich zusammenbrechen. Die hierbei entstehenden Neutronensterne besitzen extrem starke Magnetfelder, die wie bei der Erde zwei Pole besitzen. Ähnlich wie ein sich drehender Leuchtturm sendet ein Pulsar entlang der Magnetfeldachse Strahlung aus. Überstreicht diese die Erde, so nehmen die Astronomen sie als Pulse wahr.

Durch das Abstrahlen verlieren die Pulsare Energie, was sich darin äußert, dass ihre Rotationsgeschwindigkeit abnimmt. Im Jahr 1982 entdeckten Astronomen aber einen Pulsar, der für sein hohes Alter viel zu sehr schnell rotierte. Seitdem wurden rund 200 weitere solche Millisekundenpulsare mit Rotationsperioden zwischen 1,4 und 20 Millisekunden (Tausendstel Sekunden) gefunden. Sie wirbeln also 50- bis 700-mal pro Sekunde um die eigene Achse.

Die Ursache ist in solchen Systemen stets ein Begleitstern. Der umkreist den Pulsar in relativ geringem Abstand, sodass er seine äußeren Gasschichten verliert. Diese Materie strömt zu dem Pulsar hinüber, sammelt sich zunächst in einer Scheibe um ihn herum an und fällt von dort auf ihn hinunter. Dabei prallt das heiße, elektrisch leitfähige Gas (ein Plasma) auf das mit dem Pulsar rotierende Magnetfeld und stößt es an, ähnlich wie Wasser, das auf die Räder einer Mühle strömt. Dabei überträgt es seinen Schwung, den es aus der Umlaufbahn mitbringt, auf den Pulsar und beschleunigt dessen Rotation bis in den Millisekundenbereich, ähnlich wie bei einem Kreisel, den man beständig anstößt.

Irgendwann hat der Begleitstern seine äußere Hülle verloren und der Materiestrom versiegt. Nun nimmt auch die Rotationsgeschwindigkeit des Pulsars langsam wieder ab. In der Vergangenheit hatten Astronomen jedoch Millisekundenpulsare gefunden, die so langsam rotierten, dass sie für das Abbremsen auf die niedrige Rotationsgeschwindigkeit mehr Zeit als das Weltalter von 13,7 Milliarden Jahren benötigt haben müssten. Ein Paradoxon, das Thomas Tauris nun gelöst haben könnte.

Er fragte sich, was während jener Endphase passiert, in der der Gasstrom des Begleitsterns auf den Pulsar versiegt. „Wir konnten jetzt zum ersten Mal detaillierte numerische Sternentwicklungsmodelle mit Berechnungen der Abbremsung kombinieren, die auf den rotierenden Pulsar wirkt“, sagt Tauris, dessen Ergebnisse in der aktuellen Ausgabe des Fachmagazins Science erschienen sind.

In seiner Rechnung nahm Tauris einen Pulsar an, den ein Stern umkreist. Fast eine Milliarde Jahre lang füttert der Begleiter den Pulsar und treibt dessen Umdrehung an. Dann versiegt der Gasstrom langsam. Nach weiteren 170 Millionen Jahren hat der Begleiter Dreiviertel seiner Masse an den Pulsar abgegeben und der Vorgang endet. In dieser Übergangsphase geschieht etwas Merkwürdiges: Das Magnetfeld des Pulsars weitet sich aus, sodass irgendwann seine Außenbereiche schneller umlaufen, als das von außen einfallende Gas. Die Folge: Das Gas wird von dem Magnetfeld ins All geschleudert, was zu einer Abbremsung der Pulsarrotation führt. In dem Bild der Mühle würde das Wasser auf die Vorderseiten der Schaufeln prallen und die Mühle bremsen. Astrophysiker sprechen von der Propellerphase, weil das einfallende Material ähnlich wie bei einem Propeller herausgeschleudert wird.

Tauris konnte mit seinen Rechnungen zeigen, dass Millisekundenpulsare ungefähr die Hälfte ihrer Rotationsenergie während der Propellerphase verlieren, was mit Beobachtungsergebnissen gut übereinstimmt.

Damit löst sich auch das Altersparadoxon: Bei den bisherigen Altersbestimmungen ging man von einer langsamen Abbremsung der Rotation aus, die einzig auf die Emission von Strahlung zurückgeführt wurde. Der nicht berücksichtigte Propellereffekt verlangsamt Millisekundenpulsare jedoch zusätzlich.

Nicht zuletzt hatten sich Astrophysiker auch gefragt, warum es keine Pulsare mit Perioden von weniger als einer Millisekunde gibt, die sich also mehr als tausend Mal pro Sekunde um die eigene Achse drehen. Theoretisch war dies nicht ausgeschlossen. Nach Tauris’ Simulationen verhindert der Propellereffekt derart hohe Rotationsgeschwindigkeiten.

Ansprechpartner

Dr. Thomas Tauris
Max-Planck-Institut für Radioastronomie, Bonn
Telefon: +49 228 73-3660
E-Mail: tauris@astro.uni-bonn.de
Dr. Norbert Junkes
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Radioastronomie, Bonn
Telefon: +49 228 525-399
E-Mail: njunkes@mpifr-bonn.mpg.de
Publikationsreferenz
Thomas M. Tauris
Spin-Down of Radio Millisecond Pulsars at Genesis
Science Bd. 335, S. 561. DOI 10.1126/science.1216355

Dr. Thomas Tauris | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/5010841/millisekundenpulsare

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Quantenmechanik ist komplex genug – vorerst …
21.04.2017 | Universität Wien

nachricht Tief im Inneren von M87
20.04.2017 | Max-Planck-Institut für Radioastronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Immunzellen helfen bei elektrischer Reizleitung im Herzen

Erstmals elektrische Kopplung von Muskelzellen und Makrophagen im Herzen nachgewiesen / Erkenntnisse könnten neue Therapieansätze bei Herzinfarkt und Herzrhythmus-Störungen ermöglichen / Publikation am 20. April 2017 in Cell

Makrophagen, auch Fresszellen genannt, sind Teil des Immunsystems und spielen eine wesentliche Rolle in der Abwehr von Krankheitserregern und bei der...

Im Focus: Tief im Inneren von M87

Die Galaxie M87 enthält ein supermassereiches Schwarzes Loch von sechs Milliarden Sonnenmassen im Zentrum. Ihr leuchtkräftiger Jet dominiert das beobachtete Spektrum über einen Frequenzbereich von 10 Größenordnungen. Aufgrund ihrer Nähe, des ausgeprägten Jets und des sehr massereichen Schwarzen Lochs stellt M87 ein ideales Laboratorium dar, um die Entstehung, Beschleunigung und Bündelung der Materie in relativistischen Jets zu erforschen. Ein Forscherteam unter der Leitung von Silke Britzen vom MPIfR Bonn liefert Hinweise für die Verbindung von Akkretionsscheibe und Jet von M87 durch turbulente Prozesse und damit neue Erkenntnisse für das Problem des Ursprungs von astrophysikalischen Jets.

Supermassereiche Schwarze Löcher in den Zentren von Galaxien sind eines der rätselhaftesten Phänomene in der modernen Astrophysik. Ihr gewaltiger...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: Neu entdeckter Exoplanet könnte bester Kandidat für die Suche nach Leben sein

Supererde in bewohnbarer Zone um aktivitätsschwachen roten Zwergstern gefunden

Ein Exoplanet, der 40 Lichtjahre von der Erde entfernt einen roten Zwergstern umkreist, könnte in naher Zukunft der beste Ort sein, um außerhalb des...

Im Focus: Resistiver Schaltmechanismus aufgeklärt

Sie erlauben energiesparendes Schalten innerhalb von Nanosekunden, und die gespeicherten Informationen bleiben auf Dauer erhalten: ReRAM-Speicher gelten als Hoffnungsträger für die Datenspeicher der Zukunft.

Wie ReRAM-Zellen genau funktionieren, ist jedoch bisher nicht vollständig verstanden. Insbesondere die Details der ablaufenden chemischen Reaktionen geben den...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Smart-Data-Forschung auf dem Weg in die wirtschaftliche Praxis

21.04.2017 | Veranstaltungen

Baukultur: Mehr Qualität durch Gestaltungsbeiräte

21.04.2017 | Veranstaltungen

Licht - ein Werkzeug für die Laborbranche

20.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Intelligenter Werkstattwagen unterstützt Mensch in der Produktion

21.04.2017 | HANNOVER MESSE

Forschungszentrum Jülich auf der Hannover Messe 2017

21.04.2017 | HANNOVER MESSE

Smart-Data-Forschung auf dem Weg in die wirtschaftliche Praxis

21.04.2017 | Veranstaltungsnachrichten