Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Entdeckung im frühen Universum stellt Modelle für Schwarzes-Loch-Wachstum infrage

12.05.2017

Quasare sind hell leuchtende, weithin sichtbare kosmische Objekte, in deren Zentren sich supermassereiche Schwarze Löcher befinden. Einfallende Materie erhöht die Masse des Schwarzen Lochs und liefert andererseits die Energie für das Leuchten der Quasare. Jetzt haben Astronomen unter der Leitung von Christina Eilers extrem junge und ungewöhnliche Quasare gefunden. Diese Quasare sammeln erst seit rund 100,000 Jahren Materie, haben aber bereits eine Masse von rund einer Milliarde Sonnenmassen. Herkömmlichen Modellen zufolge hätten die Quasare mindestens tausend Mal länger Materie auf sich ziehen müssen, um diese Masse zu erreichen. Die Ergebnisse sind im Astrophysical Journal erschienen.

Im Herzen jeder Galaxie befindet sich ein supermassereiches Schwarzes Loch. Die Entstehungs- und Wachstumsgeschichte dieser Schwarzen Löcher bis hin zu ihren derzeitigen Massen von Millionen oder sogar Milliarden Sonnenmassen ist eine offene Frage der Forschung.


Künstlerische Darstellung: Quasar mit zentralem Schwarzen Loch, umgebender heißer Scheibe und gegenläufigen Teilchen-Jets

Bild: MPIA

Zumindest einige Phasen des Wachstums sind weithin sichtbar: Wenn größere Mengen an Materie in das Schwarze Loch fallen, dann sendet die Materie in unmittelbarer Nähe des Schwarzen Lochs enorme Mengen an Licht aus. Damit ist das Schwarze Loch vorübergehend zu einem Quasar geworden – zu einem der hellsten Objekte im Universum.

Drei ungewöhnlich junge Quasare

Jetzt haben Forscher vom Max-Planck-Institut für Astronomie (MPIA) drei Quasare gefunden, welche die herkömmlichen Vorstellungen zum Wachstum supermassereicher Schwarzer Löcher infrage stellen. Diese Quasare besitzen eine große Masse, aber sollten eigentlich keine Zeit gehabt haben, diese Masse überhaupt anzusammeln.

Die Entdeckung, die auf Beobachtungen am W. M. Keck-Observatorium auf Hawaii beruht, ist Folge eines Blicks in die kosmische Vergangenheit: Aufgrund ihrer großen Helligkeit sind Quasare bis in große kosmische Entfernungen sichtbar. Die Astronomen beobachteten Quasare, deren Licht fast 13 Milliarden Jahre zu uns unterwegs war. Ihre Aufnahmen zeigen die Quasare daher nicht so, wie sie jetzt sind, sondern so, wie sie vor rund 13 Milliarden Jahren waren, weniger als eine Milliarde Jahre nach dem Urknall.

Ein Problem von Masse und Zeitskalen

Die betreffenden Quasare haben Massen von rund einer Milliarden Sonnenmassen. Alle aktuellen Modelle für das Wachstum Schwarzer Löcher sagen voraus, dass solch eine Masse nur erreicht werden kann, wenn das Schwarze Loch für mindestens 100 Millionen Jahre Materie an sich zieht – und in diesem Zeitraum als Quasar leuchtet.

Diese drei Quasare hier waren aber offenbar nur über einen sehr viel kürzeren Zeitraum aktiv, nämlich weniger als 100,000 Jahre. "Das ist ein überraschendes Ergebnis" erklärt Christina Eilers, Doktorandin am MPIA und Erstautorin der hier vorgestellten Studie. "Wir verstehen nicht, wie die supermassereichen Schwarzen Löcher dieser Quasare in so kurzer Zeit auf so große Massen anwachsen konnten."

Um festzustellen, wie lange die beobachteten Quasare bereits aktiv waren, untersuchten die Astronomen, wie die Quasare ihre kosmische Umgebung beeinflussten. Ihr Augenmerk galt dabei der aufgeheizten, weitgehend durchsichtigen "proximity zone", zu deutsch etwa der Nah-Zonen um jeden der Quasare. "Mithilfe von Simulationen die zeigen, wie das Licht der Quasare das umgebende Gas aufheizt und ionisiert, können wir voraussagen, wie groß die Nah-Zone jedes der Quasare sein sollte" erklärt Frederick Davies, Postdoktorand am MPIA und Experte für die Wechselwirkung zwischen Quasarlicht und intergalaktischem Gas. Sobald der Quasar durch einfallende Materie "angeschaltet" wurde, wird diese Nah-Zone rasch immer größer. "Nach 100,000 Jahren sollten die Quasare bereits ausgedehnte Nah-Zonen besitzen."

Zu wenig Zeit zum Wachsen?

Überraschenderweise hatten diese drei Quasare allerdings ausnehmend kleine Nah-Zonen – was anzeigt, dass die aktive Quasar-Phase nicht vor mehr als 100,000 Jahren angefangen haben kann. "Keines der heutigen Modelle kann die Existenz dieser Objekte erklären" sagt Professor Joseph Hennawi, Leiter der Forschergruppe am MPIA in der die Entdeckung gelang. "Die Entdeckung dieser jungen Objekte stellt für die derzeitigen Theorien zur Entstehung Schwarzer Löcher eine Herausforderung da. Wir brauchen neue Modelle um zu verstehen, wie Schwarze Löcher und Galaxien entstanden sind."

Die Astronomen haben ihre nächsten Schritte bereits geplant. Christina Eilers sagt: "Wir möchten noch weitere solche jungen Quasare finden. Unsere drei ungewöhnlichen Quasare könnten im Prinzip Ausnahmefälle sein – weitere Beispiele würden zeigen, dass ein signifikanter Anteil der bekannten Quasare jünger ist als gedacht." Die Forscher haben bereits Beobachtungszeit für eine Reihe weiterer Kandidaten beantragt. Die Ergebnisse, so hoffen sie, sollten wichtige Prüfsteine für neue Modelle der Entstehung der ersten supermassereichen Schwarzen Löcher im Universum liefern und uns damit auch besser verstehen helfen, wie die gigantischen supermassereichen Schwarzen Löcher in heutigen Galaxien wie unserer Milchstraße im Laufe der kosmischen Geschichte entstanden sind.

Kontaktinformationen

Anna-Christina Eilers (Erstautorin)
Max-Planck-Institut für Astronomie
Telefon: (+49|0) 6221 528-432
E-Mail: eilers@mpia.de

Markus Pössel (Öffentlichkeitsarbeit)
Max-Planck-Institut für Astronomie
Telefon: (+49|0) 6221 528-261
E-Mail: pr@mpia.de

Hintergrundinformationen

Die hier beschriebenen Ergebnisse sind veröffentlicht als A.-C. Eilers, "Implications of z ∼ 6 Quasar Proximity Zones for the Epoch of Reonisation and Quasar Lifetimes" in der Ausgabe vom 2. Mai 2017 des Astrophysical Journal.

Die beteiligten MPIA-Forscher sind

Anna-Christina Eilers, Frederick B. Davies, Joseph F. Hennawi (auch University of California, Santa Barbara) und Chiara Mazzuchelli

in Zusammenarbeit mit

J. Xavier Prochaska (University of California, Santa Cruz) und Zarija Lukic (Lawrence Berkeley National Laboratory).

A.-C. Eilers und C. Mazzuchelli sind Mitglieder der International Max Planck Research School for Astronomy and Cosmic Physics an der Universität Heidelberg.

Weitere Informationen:

http://www.mpia.de/aktuelles/wissenschaft/2017-05-junge-quasare - Online-Version der Pressemitteilung mit weiteren Materialien
http://dx.doi.org/10.3847/1538-4357/aa6c60 - Link zum Fachartikel

Dr. Markus Pössel | Max-Planck-Institut für Astronomie

Weitere Berichte zu: Astronomie Entdeckung Galaxien MPIA Max-Planck-Institut Quasare Sonnenmassen Universum

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Biophysik - Blitzlicht aus der Nanowelt
24.04.2018 | Ludwig-Maximilians-Universität München

nachricht Moleküle brillant beleuchtet
23.04.2018 | Max-Planck-Institut für Quantenoptik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: Innovatives 3D-Druckverfahren für die Raumfahrt

Auf der Hannover Messe 2018 präsentiert die Bundesanstalt für Materialforschung und -prüfung (BAM), wie Astronauten in Zukunft Werkzeug oder Ersatzteile per 3D-Druck in der Schwerelosigkeit selbst herstellen können. So können Gewicht und damit auch Transportkosten für Weltraummissionen deutlich reduziert werden. Besucherinnen und Besucher können das innovative additive Fertigungsverfahren auf der Messe live erleben.

Pulverbasierte additive Fertigung unter Schwerelosigkeit heißt das Projekt, bei dem ein Bauteil durch Aufbringen von Pulverschichten und selektivem...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: IWS-Ingenieure formen moderne Alu-Bauteile für zukünftige Flugzeuge

Mit Unterdruck zum Leichtbau-Flugzeug

Ingenieure des Fraunhofer-Instituts für Werkstoff- und Strahltechnik (IWS) in Dresden haben in Kooperation mit Industriepartnern ein innovatives Verfahren...

Im Focus: Moleküle brillant beleuchtet

Physiker des Labors für Attosekundenphysik, der Ludwig-Maximilians-Universität und des Max-Planck-Instituts für Quantenoptik haben eine leistungsstarke Lichtquelle entwickelt, die ultrakurze Pulse über einen Großteil des mittleren Infrarot-Wellenlängenbereichs generiert. Die Wissenschaftler versprechen sich von dieser Technologie eine Vielzahl von Anwendungen, unter anderem im Bereich der Krebsfrüherkennung.

Moleküle sind die Grundelemente des Lebens. Auch wir Menschen bestehen aus ihnen. Sie steuern unseren Biorhythmus, zeigen aber auch an, wenn dieser erkrankt...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

infernum-Tag 2018: Digitalisierung und Nachhaltigkeit

24.04.2018 | Veranstaltungen

Fraunhofer eröffnet Community zur Entwicklung von Anwendungen und Technologien für die Industrie 4.0

23.04.2018 | Veranstaltungen

Mars Sample Return – Wann kommen die ersten Gesteinsproben vom Roten Planeten?

23.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Von der Genexpression zur Mikrostruktur des Gehirns

24.04.2018 | Biowissenschaften Chemie

Bestrahlungserfolg bei Hirntumoren lässt sich mit kombinierter PET/MRT vorhersagen

24.04.2018 | Medizintechnik

RWI/ISL-Containerumschlag-Index auf hohem Niveau deutlich rückläufig

24.04.2018 | Wirtschaft Finanzen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics