Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Entdeckung im frühen Universum stellt Modelle für Schwarzes-Loch-Wachstum infrage

12.05.2017

Quasare sind hell leuchtende, weithin sichtbare kosmische Objekte, in deren Zentren sich supermassereiche Schwarze Löcher befinden. Einfallende Materie erhöht die Masse des Schwarzen Lochs und liefert andererseits die Energie für das Leuchten der Quasare. Jetzt haben Astronomen unter der Leitung von Christina Eilers extrem junge und ungewöhnliche Quasare gefunden. Diese Quasare sammeln erst seit rund 100,000 Jahren Materie, haben aber bereits eine Masse von rund einer Milliarde Sonnenmassen. Herkömmlichen Modellen zufolge hätten die Quasare mindestens tausend Mal länger Materie auf sich ziehen müssen, um diese Masse zu erreichen. Die Ergebnisse sind im Astrophysical Journal erschienen.

Im Herzen jeder Galaxie befindet sich ein supermassereiches Schwarzes Loch. Die Entstehungs- und Wachstumsgeschichte dieser Schwarzen Löcher bis hin zu ihren derzeitigen Massen von Millionen oder sogar Milliarden Sonnenmassen ist eine offene Frage der Forschung.


Künstlerische Darstellung: Quasar mit zentralem Schwarzen Loch, umgebender heißer Scheibe und gegenläufigen Teilchen-Jets

Bild: MPIA

Zumindest einige Phasen des Wachstums sind weithin sichtbar: Wenn größere Mengen an Materie in das Schwarze Loch fallen, dann sendet die Materie in unmittelbarer Nähe des Schwarzen Lochs enorme Mengen an Licht aus. Damit ist das Schwarze Loch vorübergehend zu einem Quasar geworden – zu einem der hellsten Objekte im Universum.

Drei ungewöhnlich junge Quasare

Jetzt haben Forscher vom Max-Planck-Institut für Astronomie (MPIA) drei Quasare gefunden, welche die herkömmlichen Vorstellungen zum Wachstum supermassereicher Schwarzer Löcher infrage stellen. Diese Quasare besitzen eine große Masse, aber sollten eigentlich keine Zeit gehabt haben, diese Masse überhaupt anzusammeln.

Die Entdeckung, die auf Beobachtungen am W. M. Keck-Observatorium auf Hawaii beruht, ist Folge eines Blicks in die kosmische Vergangenheit: Aufgrund ihrer großen Helligkeit sind Quasare bis in große kosmische Entfernungen sichtbar. Die Astronomen beobachteten Quasare, deren Licht fast 13 Milliarden Jahre zu uns unterwegs war. Ihre Aufnahmen zeigen die Quasare daher nicht so, wie sie jetzt sind, sondern so, wie sie vor rund 13 Milliarden Jahren waren, weniger als eine Milliarde Jahre nach dem Urknall.

Ein Problem von Masse und Zeitskalen

Die betreffenden Quasare haben Massen von rund einer Milliarden Sonnenmassen. Alle aktuellen Modelle für das Wachstum Schwarzer Löcher sagen voraus, dass solch eine Masse nur erreicht werden kann, wenn das Schwarze Loch für mindestens 100 Millionen Jahre Materie an sich zieht – und in diesem Zeitraum als Quasar leuchtet.

Diese drei Quasare hier waren aber offenbar nur über einen sehr viel kürzeren Zeitraum aktiv, nämlich weniger als 100,000 Jahre. "Das ist ein überraschendes Ergebnis" erklärt Christina Eilers, Doktorandin am MPIA und Erstautorin der hier vorgestellten Studie. "Wir verstehen nicht, wie die supermassereichen Schwarzen Löcher dieser Quasare in so kurzer Zeit auf so große Massen anwachsen konnten."

Um festzustellen, wie lange die beobachteten Quasare bereits aktiv waren, untersuchten die Astronomen, wie die Quasare ihre kosmische Umgebung beeinflussten. Ihr Augenmerk galt dabei der aufgeheizten, weitgehend durchsichtigen "proximity zone", zu deutsch etwa der Nah-Zonen um jeden der Quasare. "Mithilfe von Simulationen die zeigen, wie das Licht der Quasare das umgebende Gas aufheizt und ionisiert, können wir voraussagen, wie groß die Nah-Zone jedes der Quasare sein sollte" erklärt Frederick Davies, Postdoktorand am MPIA und Experte für die Wechselwirkung zwischen Quasarlicht und intergalaktischem Gas. Sobald der Quasar durch einfallende Materie "angeschaltet" wurde, wird diese Nah-Zone rasch immer größer. "Nach 100,000 Jahren sollten die Quasare bereits ausgedehnte Nah-Zonen besitzen."

Zu wenig Zeit zum Wachsen?

Überraschenderweise hatten diese drei Quasare allerdings ausnehmend kleine Nah-Zonen – was anzeigt, dass die aktive Quasar-Phase nicht vor mehr als 100,000 Jahren angefangen haben kann. "Keines der heutigen Modelle kann die Existenz dieser Objekte erklären" sagt Professor Joseph Hennawi, Leiter der Forschergruppe am MPIA in der die Entdeckung gelang. "Die Entdeckung dieser jungen Objekte stellt für die derzeitigen Theorien zur Entstehung Schwarzer Löcher eine Herausforderung da. Wir brauchen neue Modelle um zu verstehen, wie Schwarze Löcher und Galaxien entstanden sind."

Die Astronomen haben ihre nächsten Schritte bereits geplant. Christina Eilers sagt: "Wir möchten noch weitere solche jungen Quasare finden. Unsere drei ungewöhnlichen Quasare könnten im Prinzip Ausnahmefälle sein – weitere Beispiele würden zeigen, dass ein signifikanter Anteil der bekannten Quasare jünger ist als gedacht." Die Forscher haben bereits Beobachtungszeit für eine Reihe weiterer Kandidaten beantragt. Die Ergebnisse, so hoffen sie, sollten wichtige Prüfsteine für neue Modelle der Entstehung der ersten supermassereichen Schwarzen Löcher im Universum liefern und uns damit auch besser verstehen helfen, wie die gigantischen supermassereichen Schwarzen Löcher in heutigen Galaxien wie unserer Milchstraße im Laufe der kosmischen Geschichte entstanden sind.

Kontaktinformationen

Anna-Christina Eilers (Erstautorin)
Max-Planck-Institut für Astronomie
Telefon: (+49|0) 6221 528-432
E-Mail: eilers@mpia.de

Markus Pössel (Öffentlichkeitsarbeit)
Max-Planck-Institut für Astronomie
Telefon: (+49|0) 6221 528-261
E-Mail: pr@mpia.de

Hintergrundinformationen

Die hier beschriebenen Ergebnisse sind veröffentlicht als A.-C. Eilers, "Implications of z ∼ 6 Quasar Proximity Zones for the Epoch of Reonisation and Quasar Lifetimes" in der Ausgabe vom 2. Mai 2017 des Astrophysical Journal.

Die beteiligten MPIA-Forscher sind

Anna-Christina Eilers, Frederick B. Davies, Joseph F. Hennawi (auch University of California, Santa Barbara) und Chiara Mazzuchelli

in Zusammenarbeit mit

J. Xavier Prochaska (University of California, Santa Cruz) und Zarija Lukic (Lawrence Berkeley National Laboratory).

A.-C. Eilers und C. Mazzuchelli sind Mitglieder der International Max Planck Research School for Astronomy and Cosmic Physics an der Universität Heidelberg.

Weitere Informationen:

http://www.mpia.de/aktuelles/wissenschaft/2017-05-junge-quasare - Online-Version der Pressemitteilung mit weiteren Materialien
http://dx.doi.org/10.3847/1538-4357/aa6c60 - Link zum Fachartikel

Dr. Markus Pössel | Max-Planck-Institut für Astronomie

Weitere Berichte zu: Astronomie Entdeckung Galaxien MPIA Max-Planck-Institut Quasare Sonnenmassen Universum

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Lasing am Limit
15.02.2018 | Technische Universität Berlin

nachricht Forschung für die LED-Tapete der Zukunft
15.02.2018 | Universität Bremen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantenbits per Licht übertragen

Physiker aus Princeton, Konstanz und Maryland koppeln Quantenbits und Licht

Der Quantencomputer rückt näher: Neue Forschungsergebnisse zeigen das Potenzial von Licht als Medium, um Informationen zwischen sogenannten Quantenbits...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Das VLT der ESO arbeitet erstmals wie ein 16-Meter-Teleskop

Erstes Licht für das ESPRESSO-Instrument mit allen vier Hauptteleskopen

Das ESPRESSO-Instrument am Very Large Telescope der ESO in Chile hat zum ersten Mal das kombinierte Licht aller vier 8,2-Meter-Hauptteleskope nutzbar gemacht....

Im Focus: Neuer Quantenspeicher behält Information über Stunden

Information in einem Quantensystem abzuspeichern ist schwer, sie geht meist rasch verloren. An der TU Wien erzielte man nun ultralange Speicherzeiten mit winzigen Diamanten.

Mit Quantenteilchen kann man Information speichern und manipulieren – das ist die Basis für viele vielversprechende Technologien, vom hochsensiblen...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Smart City: Interdisziplinäre Konferenz zu Solarenergie und Architektur

15.02.2018 | Veranstaltungen

Forschung für fruchtbare Böden / BonaRes-Konferenz 2018 versammelt internationale Bodenforscher

15.02.2018 | Veranstaltungen

Conference of Game Based Learning am 8./9. März in Dresden

15.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Lasing am Limit

15.02.2018 | Physik Astronomie

Neue Studienergebnisse zur Tiefenhyperthermie-Behandlung

15.02.2018 | Medizintechnik

Smart City: Interdisziplinäre Konferenz zu Solarenergie und Architektur

15.02.2018 | Veranstaltungsnachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics