Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Entdeckung von Atomkernen: Prof. Hans Geissel ist „Vize-Weltmeister“

07.08.2012
Mitarbeiter des II. Physikalischen Instituts der Justus-Liebig-Universität Gießen (JLU) und Leiter der Abteilung FRS-ESR beim GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt hat 210 Atomkerne bzw. Isotope entdeckt

Weltrekorde werden dieser Tage im Sport bei den Olympischen Spielen in London aufgestellt. Coubertins Ideale „schneller, höher, stärker“ gelten gleichermaßen in der Forschung. Prof. Dr. Hans Geissel, Mitglied des II. Physikalischen Instituts der Justus-Liebig-Universität Gießen (JLU) und Leiter der Abteilung FRS-ESR beim GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt, hat ebenso wie seine Physiker-Kollegen Prof. Dr. Gottfried Münzenberg (GSI/ Universität Mainz) und Nobelpreisträger Prof. Francis William Aston (Cambridge) weltweit viel beachtete Rekorde im Fachgebiet Physik aufgestellt. Insgesamt 210 Atomkerne hat Prof. Geissel entdeckt. Damit steht er auf Platz 2 der Rangliste der erfolgreichsten Atomkern-Entdecker und ist „Vize-Weltmeister“.


Prof. Dr. Dr. h.c. Hans Geissel beim Experimentaufbau
Foto: G. Otto / GSI

Den Weltrekord mit 218 Atomkernen hält Prof. Münzenberg. Auch er hat in Gießen am II. Physikalischen Institut der JLU als Hochschuldozent gearbeitet, ehe er an das GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt berufen wurde. Die Rangliste stammt von dem amerikanischen Wissenschaftler Michael Thoennessen von der Michigan State University, der die Zahlen in der Fachzeitschrift Nature veröffentlicht hat.

„Unsere Materie auf der Erde ist aus Atomen aufgebaut. Alle Atome, die dieselbe elektrische Ladung im Atomkern besitzen, werden als ein chemisches Element klassifiziert. Bislang sind 114 chemische Elemente bekannt. Von jedem Element gibt es unterschiedliche Sorten, die so genannten Isotope, deren Atomkerne zwar dieselbe elektrische Ladung besitzen, die sich jedoch durch ihre Masse unterscheiden. Die Entdeckung eines neuen Atomkerns entspricht somit der Entdeckung eines neuen Isotops. Insgesamt haben die Forscher ca. 3.100 Isotope beobachtet, weitere 1.000 unbekannte sind vorausgesagt“, heißt es in einer Pressemitteilung der GSI zu den Rekorden.

Prof. Dr. Hans Geissel ist Mitarbeiter am II. Physikalischen Institut der JLU und Leiter der Abteilung FRS-ESR beim GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt. Für seine herausragenden Forschungsarbeiten auf dem Gebiet der Experimentalphysik wurde ihm 2010 der Ehrendoktor der Chalmers Technical University in Göteborg zuerkannt. Seine Arbeiten beinhalten Präzisionsmessungen der atomaren und nuklearen Wechselwirkung von schnellen Ionen mit Materie. Experimente mit kurzlebigen, leichten Projektilfragmenten waren Wegbereiter für die PET-Kamera. Seine Forschungsarbeiten auf dem Gebiet der Experimentalphysik finden Anwendung in den unterschiedlichsten Bereichen, ob in der Weltraumforschung oder auch bei der Tumortherapie mit Ionen. Prof. Geissel ist außerdem Projektleiter des Super-FRS, der das zentrale Forschungsinstrument der NUSTAR-Kollaboration bei FAIR sein wird.

Prof. Dr. Gottfried Münzenberg, der die meisten Atomkerne entdeckt hat und somit den Weltrekord hält, ist ebenfalls JLU-Alumnus. Er studierte in Gießen und an der Universität Innsbruck Physik und schloss seine Studien 1971 mit der Promotion an der JLU ab. 1976 trat er in die Abteilung Kernchemie an der GSI in Darmstadt ein. Er war maßgeblich beteiligt an der Konstruktion von SHIP, dem “Separator of Heavy Ion Reaction Products”. Er war die treibende Kraft in der Entdeckung der kalten Schwerionenfusion und ihrer Anwendung auf die Synthese der schwersten Elemente. 1984 wurde er Leiter des neuen GSI-Projektes FRS, des Fragmentseparators. Er leitete die Abteilung „Kernstruktur und Kernchemie“ an der GSI und war bis zu seiner Pensionierung im März 2005 Professor an der Universität Mainz.

Kontakt:
Prof. Dr. Dr. h.c. Hans Geissel
II. Physikalisches Institut der JLU Gießen
Heinrich-Buff-Ring 14-16
35392 Gießen
Telefon: 0641 99-33241/6
GSI Helmholtzzentrum für Schwerionenforschung GmbH
Planckstraße 1
64291 Darmstadt
Telefon: 06159-712706 -2740
Die 1607 gegründete Justus-Liebig-Universität Gießen (JLU) ist eine traditionsreiche Forschungsuniversität, die rund 25.000 Studierende anzieht. Neben einem breiten Lehrangebot – von den klassischen Naturwissenschaften über Rechts- und Wirtschaftswissenschaften, Gesellschafts- und Erziehungswissenschaften bis hin zu Sprach- und Kulturwissen¬schaften – bietet sie ein lebenswissenschaftliches Fächerspektrum, das nicht nur in Hessen einmalig ist: Human- und Veterinärmedizin, Agrar-, Umwelt- und Ernährungswissenschaften sowie Lebensmittelchemie. Unter den großen Persönlichkeiten, die an der JLU geforscht und gelehrt haben, befinden sich eine Reihe von Nobelpreisträgern, unter anderem Wilhelm Conrad Röntgen (Nobelpreis für Physik 1901) und Wangari Maathai (Friedensnobelpreis 2004). Seit 2006 wird die JLU sowohl in der ersten als auch in der zweiten Förderlinie der Exzellenzinitiative gefördert (Excellence Cluster Cardio-Pulmonary System – ECCPS; International Graduate Centre for the Study of Culture – GCSC).

Charlotte Brückner-Ihl | idw
Weitere Informationen:
http://www.nscl.msu.edu/~thoennes/isotopes/
http://www.gsi.de/start/aktuelles/detailseite/datum/2012/07/24/entdeckung-von-atomkernen-gsi-wissenschaftler-halten-weltrekord.htm

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Licht macht Ionen Beine
20.04.2018 | Max-Planck-Institut für Festkörperforschung, Stuttgart

nachricht Auf dem Weg zur optischen Kernuhr
19.04.2018 | Physikalisch-Technische Bundesanstalt (PTB)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Der komplette Zellatlas und Stammbaum eines unsterblichen Plattwurms

Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.

Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gammastrahlungsblitze aus Plasmafäden

Neuartige hocheffiziente und brillante Quelle für Gammastrahlung: Anhand von Modellrechnungen haben Physiker des Heidelberger MPI für Kernphysik eine neue Methode für eine effiziente und brillante Gammastrahlungsquelle vorgeschlagen. Ein gigantischer Gammastrahlungsblitz wird hier durch die Wechselwirkung eines dichten ultra-relativistischen Elektronenstrahls mit einem dünnen leitenden Festkörper erzeugt. Die reichliche Produktion energetischer Gammastrahlen beruht auf der Aufspaltung des Elektronenstrahls in einzelne Filamente, während dieser den Festkörper durchquert. Die erreichbare Energie und Intensität der Gammastrahlung eröffnet neue und fundamentale Experimente in der Kernphysik.

Die typische Wellenlänge des Lichtes, die mit einem Objekt des Mikrokosmos wechselwirkt, ist umso kürzer, je kleiner dieses Objekt ist. Für Atome reicht dies...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Der komplette Zellatlas und Stammbaum eines unsterblichen Plattwurms

20.04.2018 | Biowissenschaften Chemie

Digitale Medien für die Aus- und Weiterbildung: Schweißsimulator auf Hannover Messe live erleben

20.04.2018 | HANNOVER MESSE

Neurodegenerative Erkrankungen - Fatale Tröpfchen

20.04.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics