Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Das Ende der Magie: Schalenmodell ist bei Berylliumisotopen ungültig

04.04.2012
Atomkerne im Laserlicht: Kernphysiker untersuchen magische Schalen – Veröffentlichung in Physical Review Letters

Einer Gruppe von Wissenschaftlern um Prof. Dr. Wilfried Nörtershäuser ist es erstmals gelungen, die Größe der Ladungsverteilung eines Atomkerns des sehr exotischen Isotops Beryllium-12 zu vermessen.


Tanz der Nukleonen: Der Kern von Beryllium-12 kann als ein Konglomerat zweier Helium-4-Kerne mit vier zusätzlichen Neutronen verstanden werden. Das Schalenmodell sagt für die magische Neutronenzahl N=8 einen Kern voraus, in dem sich alle 4 Neutronen zwischen den Helium-4-Kernen befinden (links). Entgegen dieser Theorie deuten die experimentellen Messdaten jedoch darauf hin, dass sich zwei dieser Neutronen außerhalb der Helium-4-Kerne befinden. Diese Konstellation, die eher dem Verbund eines Helium-8-Kerns mit einem Helium-4-Kern ähnelt, vergrößert den Berylliumkern deutlich und ist ein Indiz für den Zusammenbruch des magischen Schalenabschlusses bei N=8 im Berylllium-12-Kern.
Quelle: Institut für Kernchemie, JGU

Unerwartet zeigte sich für die Forscher, dass dieser sogenannte Ladungsradius gegenüber dem Isotop Beryllium-11 ansteigt, während der Radius der Materieverteilung signifikant abnimmt. Dies widerspricht den Annahmen der Kernphysik über den Aufbau von Atomkernen.

Demnach wäre nämlich auch eine Verringerung des Kernladungsradius zu erwarten gewesen. „Unsere Messungen widersprechen der Vorhersage des Schalenmodells und sind ein deutlicher Beleg dafür, dass bei Berylliumisotopen die Zahl von 8 Neutronen nicht mehr magisch ist“, teilte Andreas Krieger vom Institut für Kernchemie der Johannes Gutenberg-Universität Mainz (JGU) dazu mit. Die magischen Zahlen geben an, wie viele Neutronen oder Protonen auf den Schalen im Atomkern Platz haben.

Atomkerne bestehen aus Nukleonen: den positiv geladenen Protonen und ungelade-nen Neutronen. Die Zahl der Protonen legt fest, um welches Element es sich handelt. So ist ein Kern mit 4 Protonen immer ein Kern des Elements Beryllium. Die Zahl der Neutronen kann variieren, wodurch sich die verschiedenen Isotope eines Elements bilden. Im Falle von Beryllium, einem Leichtmetall, ist nur das Isotop Beryllium-9 mit einer Gesamtzahl von 9 Nukleonen, also 4 Protonen und 5 Neutronen, stabil. Alle anderen Isotope zerfallen noch einer bestimmten Zeit.

Insgesamt existieren auf der Erde etwa 500 stabile Isotope, darüber hinaus wurden etwa 2500 radioaktive Isotope in verschiedenen „Isotopenfabriken“ weltweit produziert und untersucht. Die systematische Untersuchung von Atomkernen führte zu der Entdeckung, dass Kerne mit einer bestimmten Anzahl an Protonen oder Neutronen besonders stabil sind. Dies tritt bei den als „magisch“ bezeichneten Neutronen- oder Protonenzahlen 2, 8, 20, 28, 50, 82 und 126 auf.

2008 hat die Gruppe um Wilfried Nörtershäuser den Kernladungsradius – also den Radius einer gedachten Kugel um den Bereich, in dem die Protonen des Kerns konzentriert sind – des Isotops Beryllium-11 durch eine Präzisionsmessung mit Lasern erfolgreich gemessen. Die Wissenschaftler konnten damals zeigen, dass sich das sehr schwach gebundene siebte Neutron in Beryllium-11 im Mittel sehr weit von dem restlichen Beryllium-10-Rumpfkern entfernt aufhält und ihn wie ein Heiligenschein oder „Halo“ umgibt. Der Rumpfkern wird – im mechanischen Modell – auf eine Kreisbahn gezwungen, die dazu führt, dass seine Ladung über einen größeren Raumbereich „ausgeschmiert“ wird und der Ladungsradius deshalb ansteigt.

Danach rückte der Kern des Isotops Beryllium-12 in das Interesse der Forscher. Für die Untersuchungen musste die laserspektroskopische Methode allerdings um das Tausendfache empfindlicher gemacht werden, weil das Isotop an der Isotopenfabrik ISOLDE/CERN nur mit geringer Produktionsrate erzeugt werden kann. Überdies existiert das Teilchen kürzer, als ein Lidschlag währt: Nach nur 20-tausendstel Sekunden ist die Hälfte der produzierten Beryllium-12-Kerne bereits wieder zerfallen.

Unter Einsatz eines hochpräzisen Lasersystems ist es der Nachwuchsgruppe um Nör-tershäuser in Zusammenarbeit mit Kollegen vom Max-Planck-Institut für Kernphysik in Heidelberg und von der KU Leuven jetzt gelungen, auch den Kernladungsradius dieses sehr exotischen Isotops zu bestimmen. Zur Überraschung der Forscher stellte sich heraus, dass der Kernladungsradius gegenüber dem Halo-Kern bei Beryllium-11 weiter ansteigt obwohl die Neutronen in Beryllium-12 wesentlich stärker gebunden sind. Dies widerspricht klar der Vorhersage des Schalenmodells, wonach der La-dungsradius hätte abnehmen müssen. „Als Erklärung können wir nur annehmen, dass die Schalen nicht mehr der Reihenfolge nach besetzt werden, dass also die dritte Schale schon mit Neutronen besetzt wird, noch bevor die zweite Schale voll ist“, so Nörtershäuser. Bei den Berylliumisotopen ist die Zahl von 8 Neutronen offenbar nicht mehr magisch.
Das Fachjournal Physical Review Letters berichtet in seiner Ausgabe vom 6. April über dieses Experiment und den Vergleich mit theoretischen Modellrechnungen, die am GSI Helmholtzzentrum für Schwerionenforschung durchgeführt wurden. Die Rechnungen können den Verlauf der gemessenen Ladungsradien entlang der Isotopenkette sehr gut reproduzieren.

Weitere Untersuchungen der Kernstruktur, die zu einem besseren Verständnis des Kernaufbaus beitragen werden, sind sowohl an ISOLDE am CERN als auch am TRIGA-Forschungsreaktor des Instituts für Kernchemie der Johannes Gutenberg-Universität in Vorbereitung.

Die Arbeiten wurden von der Helmholtz-Gemeinschaft, der Max-Planck-Gesellschaft sowie vom Bundesministerium für Bildung und Forschung (BMBF) und der Carl-Zeiss-Stiftung gefördert.

Veröffentlichung:
A. Krieger, K. Blaum, M. L. Bissell, N. Frömmgen, Ch. Geppert, M. Hammen, K. Kreim, M. Kowalska, J. Krämer, T. Neff, R. Neugart, G. Neyens, W. Nörtershäuser, Ch. Novot-ny, R. Sánchez, and D. T. Yordanov
Nuclear Charge Radius of 12Be
Physical Review Letters, 06. April 2012
DOI 10.1103/PhysRevLett.108.142501

Weitere Informationen:
Prof. Dr. Wilfried Nörtershäuser
Institut für Kernchemie
Johannes Gutenberg-Universität Mainz (JGU)
D 55099 Mainz
Tel. +49 6131 39-25881
Fax +49 6131 39-27039
E-Mail: noerters@uni-mainz.de

Petra Giegerich | idw
Weitere Informationen:
http://www.uni-mainz.de/FB/Chemie/AK-Noertershaeuser/de/index.html
http://www.kernchemie.uni-mainz.de/
http://prl.aps.org/abstract/PRL/v108/i14/e142501

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neue Methode für die Datenübertragung mit Licht
29.05.2017 | Leibniz-Institut für Photonische Technologien e. V.

nachricht Schnell wachsende Galaxien könnten kosmisches Rätsel lösen – zeigen früheste Verschmelzung
26.05.2017 | Max-Planck-Institut für Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neue Methode für die Datenübertragung mit Licht

Der steigende Bedarf an schneller, leistungsfähiger Datenübertragung erfordert die Entwicklung neuer Verfahren zur verlustarmen und störungsfreien Übermittlung von optischen Informationssignalen. Wissenschaftler der Universität Johannesburg, des Instituts für Angewandte Optik der Friedrich-Schiller-Universität Jena und des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) präsentieren im Fachblatt „Journal of Optics“ eine neue Möglichkeit, glasfaserbasierte und kabellose optische Datenübertragung effizient miteinander zu verbinden.

Dank des Internets können wir in Sekundenbruchteilen mit Menschen rund um den Globus in Kontakt treten. Damit die Kommunikation reibungslos funktioniert,...

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

Staphylococcus aureus ist aufgrund häufiger Resistenzen gegenüber vielen Antibiotika ein gefürchteter Erreger (MRSA) insbesondere bei Krankenhaus-Infektionen. Forscher des Paul-Ehrlich-Instituts haben immunologische Prozesse identifiziert, die eine erfolgreiche körpereigene, gegen den Erreger gerichtete Abwehr verhindern. Die Forscher konnten zeigen, dass sich durch Übertragung von Protein oder Boten-RNA (mRNA, messenger RNA) des Erregers auf Immunzellen die Immunantwort in Richtung einer aktiven Erregerabwehr verschieben lässt. Dies könnte für die Entwicklung eines wirksamen Impfstoffs bedeutsam sein. Darüber berichtet PLOS Pathogens in seiner Online-Ausgabe vom 25.05.2017.

Staphylococcus aureus (S. aureus) ist ein Bakterium, das bei weit über der Hälfte der Erwachsenen Haut und Schleimhäute besiedelt und dabei normalerweise keine...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebensdauer alternder Brücken - prüfen und vorausschauen

29.05.2017 | Veranstaltungen

49. eucen-Konferenz zum Thema Lebenslanges Lernen an Universitäten

29.05.2017 | Veranstaltungen

Internationale Konferenz an der Schnittstelle von Literatur, Kultur und Wirtschaft

29.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Intelligente Sensoren mit System

29.05.2017 | Messenachrichten

Geckos kommunizieren überraschend flexibel

29.05.2017 | Biowissenschaften Chemie

1,5 Millionen Euro für vier neue „Innovative Training Networks” an der Universität Hamburg

29.05.2017 | Förderungen Preise