Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Das Ende der Magie: Schalenmodell ist bei Berylliumisotopen ungültig

04.04.2012
Atomkerne im Laserlicht: Kernphysiker untersuchen magische Schalen – Veröffentlichung in Physical Review Letters

Einer Gruppe von Wissenschaftlern um Prof. Dr. Wilfried Nörtershäuser ist es erstmals gelungen, die Größe der Ladungsverteilung eines Atomkerns des sehr exotischen Isotops Beryllium-12 zu vermessen.


Tanz der Nukleonen: Der Kern von Beryllium-12 kann als ein Konglomerat zweier Helium-4-Kerne mit vier zusätzlichen Neutronen verstanden werden. Das Schalenmodell sagt für die magische Neutronenzahl N=8 einen Kern voraus, in dem sich alle 4 Neutronen zwischen den Helium-4-Kernen befinden (links). Entgegen dieser Theorie deuten die experimentellen Messdaten jedoch darauf hin, dass sich zwei dieser Neutronen außerhalb der Helium-4-Kerne befinden. Diese Konstellation, die eher dem Verbund eines Helium-8-Kerns mit einem Helium-4-Kern ähnelt, vergrößert den Berylliumkern deutlich und ist ein Indiz für den Zusammenbruch des magischen Schalenabschlusses bei N=8 im Berylllium-12-Kern.
Quelle: Institut für Kernchemie, JGU

Unerwartet zeigte sich für die Forscher, dass dieser sogenannte Ladungsradius gegenüber dem Isotop Beryllium-11 ansteigt, während der Radius der Materieverteilung signifikant abnimmt. Dies widerspricht den Annahmen der Kernphysik über den Aufbau von Atomkernen.

Demnach wäre nämlich auch eine Verringerung des Kernladungsradius zu erwarten gewesen. „Unsere Messungen widersprechen der Vorhersage des Schalenmodells und sind ein deutlicher Beleg dafür, dass bei Berylliumisotopen die Zahl von 8 Neutronen nicht mehr magisch ist“, teilte Andreas Krieger vom Institut für Kernchemie der Johannes Gutenberg-Universität Mainz (JGU) dazu mit. Die magischen Zahlen geben an, wie viele Neutronen oder Protonen auf den Schalen im Atomkern Platz haben.

Atomkerne bestehen aus Nukleonen: den positiv geladenen Protonen und ungelade-nen Neutronen. Die Zahl der Protonen legt fest, um welches Element es sich handelt. So ist ein Kern mit 4 Protonen immer ein Kern des Elements Beryllium. Die Zahl der Neutronen kann variieren, wodurch sich die verschiedenen Isotope eines Elements bilden. Im Falle von Beryllium, einem Leichtmetall, ist nur das Isotop Beryllium-9 mit einer Gesamtzahl von 9 Nukleonen, also 4 Protonen und 5 Neutronen, stabil. Alle anderen Isotope zerfallen noch einer bestimmten Zeit.

Insgesamt existieren auf der Erde etwa 500 stabile Isotope, darüber hinaus wurden etwa 2500 radioaktive Isotope in verschiedenen „Isotopenfabriken“ weltweit produziert und untersucht. Die systematische Untersuchung von Atomkernen führte zu der Entdeckung, dass Kerne mit einer bestimmten Anzahl an Protonen oder Neutronen besonders stabil sind. Dies tritt bei den als „magisch“ bezeichneten Neutronen- oder Protonenzahlen 2, 8, 20, 28, 50, 82 und 126 auf.

2008 hat die Gruppe um Wilfried Nörtershäuser den Kernladungsradius – also den Radius einer gedachten Kugel um den Bereich, in dem die Protonen des Kerns konzentriert sind – des Isotops Beryllium-11 durch eine Präzisionsmessung mit Lasern erfolgreich gemessen. Die Wissenschaftler konnten damals zeigen, dass sich das sehr schwach gebundene siebte Neutron in Beryllium-11 im Mittel sehr weit von dem restlichen Beryllium-10-Rumpfkern entfernt aufhält und ihn wie ein Heiligenschein oder „Halo“ umgibt. Der Rumpfkern wird – im mechanischen Modell – auf eine Kreisbahn gezwungen, die dazu führt, dass seine Ladung über einen größeren Raumbereich „ausgeschmiert“ wird und der Ladungsradius deshalb ansteigt.

Danach rückte der Kern des Isotops Beryllium-12 in das Interesse der Forscher. Für die Untersuchungen musste die laserspektroskopische Methode allerdings um das Tausendfache empfindlicher gemacht werden, weil das Isotop an der Isotopenfabrik ISOLDE/CERN nur mit geringer Produktionsrate erzeugt werden kann. Überdies existiert das Teilchen kürzer, als ein Lidschlag währt: Nach nur 20-tausendstel Sekunden ist die Hälfte der produzierten Beryllium-12-Kerne bereits wieder zerfallen.

Unter Einsatz eines hochpräzisen Lasersystems ist es der Nachwuchsgruppe um Nör-tershäuser in Zusammenarbeit mit Kollegen vom Max-Planck-Institut für Kernphysik in Heidelberg und von der KU Leuven jetzt gelungen, auch den Kernladungsradius dieses sehr exotischen Isotops zu bestimmen. Zur Überraschung der Forscher stellte sich heraus, dass der Kernladungsradius gegenüber dem Halo-Kern bei Beryllium-11 weiter ansteigt obwohl die Neutronen in Beryllium-12 wesentlich stärker gebunden sind. Dies widerspricht klar der Vorhersage des Schalenmodells, wonach der La-dungsradius hätte abnehmen müssen. „Als Erklärung können wir nur annehmen, dass die Schalen nicht mehr der Reihenfolge nach besetzt werden, dass also die dritte Schale schon mit Neutronen besetzt wird, noch bevor die zweite Schale voll ist“, so Nörtershäuser. Bei den Berylliumisotopen ist die Zahl von 8 Neutronen offenbar nicht mehr magisch.
Das Fachjournal Physical Review Letters berichtet in seiner Ausgabe vom 6. April über dieses Experiment und den Vergleich mit theoretischen Modellrechnungen, die am GSI Helmholtzzentrum für Schwerionenforschung durchgeführt wurden. Die Rechnungen können den Verlauf der gemessenen Ladungsradien entlang der Isotopenkette sehr gut reproduzieren.

Weitere Untersuchungen der Kernstruktur, die zu einem besseren Verständnis des Kernaufbaus beitragen werden, sind sowohl an ISOLDE am CERN als auch am TRIGA-Forschungsreaktor des Instituts für Kernchemie der Johannes Gutenberg-Universität in Vorbereitung.

Die Arbeiten wurden von der Helmholtz-Gemeinschaft, der Max-Planck-Gesellschaft sowie vom Bundesministerium für Bildung und Forschung (BMBF) und der Carl-Zeiss-Stiftung gefördert.

Veröffentlichung:
A. Krieger, K. Blaum, M. L. Bissell, N. Frömmgen, Ch. Geppert, M. Hammen, K. Kreim, M. Kowalska, J. Krämer, T. Neff, R. Neugart, G. Neyens, W. Nörtershäuser, Ch. Novot-ny, R. Sánchez, and D. T. Yordanov
Nuclear Charge Radius of 12Be
Physical Review Letters, 06. April 2012
DOI 10.1103/PhysRevLett.108.142501

Weitere Informationen:
Prof. Dr. Wilfried Nörtershäuser
Institut für Kernchemie
Johannes Gutenberg-Universität Mainz (JGU)
D 55099 Mainz
Tel. +49 6131 39-25881
Fax +49 6131 39-27039
E-Mail: noerters@uni-mainz.de

Petra Giegerich | idw
Weitere Informationen:
http://www.uni-mainz.de/FB/Chemie/AK-Noertershaeuser/de/index.html
http://www.kernchemie.uni-mainz.de/
http://prl.aps.org/abstract/PRL/v108/i14/e142501

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern
20.06.2018 | Leibniz-Institut für Photonische Technologien e. V.

nachricht Rätselhaftes IceCube-Ereignis könnte von Tau-Neutrino stammen
19.06.2018 | Johannes Gutenberg-Universität Mainz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Revolution der Rohre

Forscher*innen des Instituts für Sensor- und Aktortechnik (ISAT) der Hochschule Coburg lassen Rohrleitungen, Schläuchen oder Behältern in Zukunft regelrecht Ohren wachsen. Sie entwickelten ein innovatives akustisches Messverfahren, um Ablagerungen in Rohren frühzeitig zu erkennen.

Rückstände in Abflussleitungen führen meist zu unerfreulichen Folgen. Ein besonderes Gefährdungspotential birgt der Biofilm – eine Schleimschicht, in der...

Im Focus: Überdosis Calcium

Nanokristalle beeinflussen die Differenzierung von Stammzellen während der Knochenbildung

Wissenschaftlerinnen und Wissenschaftler der Universitäten Freiburg und Basel haben einen Hauptschalter für die Regeneration von Knochengewebe identifiziert....

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

Hengstberger-Symposium zur Sternentstehung

19.06.2018 | Veranstaltungen

LymphomKompetenz KOMPAKT: Neues vom EHA2018

19.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungsnachrichten

Breitbandservices von DNS:NET erweitert

20.06.2018 | Unternehmensmeldung

Mit Parasiten infizierte Stichlinge beeinflussen Verhalten gesunder Artgenossen

20.06.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics