Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Das Ende der Magie: Schalenmodell ist bei Berylliumisotopen ungültig

04.04.2012
Atomkerne im Laserlicht: Kernphysiker untersuchen magische Schalen – Veröffentlichung in Physical Review Letters

Einer Gruppe von Wissenschaftlern um Prof. Dr. Wilfried Nörtershäuser ist es erstmals gelungen, die Größe der Ladungsverteilung eines Atomkerns des sehr exotischen Isotops Beryllium-12 zu vermessen.


Tanz der Nukleonen: Der Kern von Beryllium-12 kann als ein Konglomerat zweier Helium-4-Kerne mit vier zusätzlichen Neutronen verstanden werden. Das Schalenmodell sagt für die magische Neutronenzahl N=8 einen Kern voraus, in dem sich alle 4 Neutronen zwischen den Helium-4-Kernen befinden (links). Entgegen dieser Theorie deuten die experimentellen Messdaten jedoch darauf hin, dass sich zwei dieser Neutronen außerhalb der Helium-4-Kerne befinden. Diese Konstellation, die eher dem Verbund eines Helium-8-Kerns mit einem Helium-4-Kern ähnelt, vergrößert den Berylliumkern deutlich und ist ein Indiz für den Zusammenbruch des magischen Schalenabschlusses bei N=8 im Berylllium-12-Kern.
Quelle: Institut für Kernchemie, JGU

Unerwartet zeigte sich für die Forscher, dass dieser sogenannte Ladungsradius gegenüber dem Isotop Beryllium-11 ansteigt, während der Radius der Materieverteilung signifikant abnimmt. Dies widerspricht den Annahmen der Kernphysik über den Aufbau von Atomkernen.

Demnach wäre nämlich auch eine Verringerung des Kernladungsradius zu erwarten gewesen. „Unsere Messungen widersprechen der Vorhersage des Schalenmodells und sind ein deutlicher Beleg dafür, dass bei Berylliumisotopen die Zahl von 8 Neutronen nicht mehr magisch ist“, teilte Andreas Krieger vom Institut für Kernchemie der Johannes Gutenberg-Universität Mainz (JGU) dazu mit. Die magischen Zahlen geben an, wie viele Neutronen oder Protonen auf den Schalen im Atomkern Platz haben.

Atomkerne bestehen aus Nukleonen: den positiv geladenen Protonen und ungelade-nen Neutronen. Die Zahl der Protonen legt fest, um welches Element es sich handelt. So ist ein Kern mit 4 Protonen immer ein Kern des Elements Beryllium. Die Zahl der Neutronen kann variieren, wodurch sich die verschiedenen Isotope eines Elements bilden. Im Falle von Beryllium, einem Leichtmetall, ist nur das Isotop Beryllium-9 mit einer Gesamtzahl von 9 Nukleonen, also 4 Protonen und 5 Neutronen, stabil. Alle anderen Isotope zerfallen noch einer bestimmten Zeit.

Insgesamt existieren auf der Erde etwa 500 stabile Isotope, darüber hinaus wurden etwa 2500 radioaktive Isotope in verschiedenen „Isotopenfabriken“ weltweit produziert und untersucht. Die systematische Untersuchung von Atomkernen führte zu der Entdeckung, dass Kerne mit einer bestimmten Anzahl an Protonen oder Neutronen besonders stabil sind. Dies tritt bei den als „magisch“ bezeichneten Neutronen- oder Protonenzahlen 2, 8, 20, 28, 50, 82 und 126 auf.

2008 hat die Gruppe um Wilfried Nörtershäuser den Kernladungsradius – also den Radius einer gedachten Kugel um den Bereich, in dem die Protonen des Kerns konzentriert sind – des Isotops Beryllium-11 durch eine Präzisionsmessung mit Lasern erfolgreich gemessen. Die Wissenschaftler konnten damals zeigen, dass sich das sehr schwach gebundene siebte Neutron in Beryllium-11 im Mittel sehr weit von dem restlichen Beryllium-10-Rumpfkern entfernt aufhält und ihn wie ein Heiligenschein oder „Halo“ umgibt. Der Rumpfkern wird – im mechanischen Modell – auf eine Kreisbahn gezwungen, die dazu führt, dass seine Ladung über einen größeren Raumbereich „ausgeschmiert“ wird und der Ladungsradius deshalb ansteigt.

Danach rückte der Kern des Isotops Beryllium-12 in das Interesse der Forscher. Für die Untersuchungen musste die laserspektroskopische Methode allerdings um das Tausendfache empfindlicher gemacht werden, weil das Isotop an der Isotopenfabrik ISOLDE/CERN nur mit geringer Produktionsrate erzeugt werden kann. Überdies existiert das Teilchen kürzer, als ein Lidschlag währt: Nach nur 20-tausendstel Sekunden ist die Hälfte der produzierten Beryllium-12-Kerne bereits wieder zerfallen.

Unter Einsatz eines hochpräzisen Lasersystems ist es der Nachwuchsgruppe um Nör-tershäuser in Zusammenarbeit mit Kollegen vom Max-Planck-Institut für Kernphysik in Heidelberg und von der KU Leuven jetzt gelungen, auch den Kernladungsradius dieses sehr exotischen Isotops zu bestimmen. Zur Überraschung der Forscher stellte sich heraus, dass der Kernladungsradius gegenüber dem Halo-Kern bei Beryllium-11 weiter ansteigt obwohl die Neutronen in Beryllium-12 wesentlich stärker gebunden sind. Dies widerspricht klar der Vorhersage des Schalenmodells, wonach der La-dungsradius hätte abnehmen müssen. „Als Erklärung können wir nur annehmen, dass die Schalen nicht mehr der Reihenfolge nach besetzt werden, dass also die dritte Schale schon mit Neutronen besetzt wird, noch bevor die zweite Schale voll ist“, so Nörtershäuser. Bei den Berylliumisotopen ist die Zahl von 8 Neutronen offenbar nicht mehr magisch.
Das Fachjournal Physical Review Letters berichtet in seiner Ausgabe vom 6. April über dieses Experiment und den Vergleich mit theoretischen Modellrechnungen, die am GSI Helmholtzzentrum für Schwerionenforschung durchgeführt wurden. Die Rechnungen können den Verlauf der gemessenen Ladungsradien entlang der Isotopenkette sehr gut reproduzieren.

Weitere Untersuchungen der Kernstruktur, die zu einem besseren Verständnis des Kernaufbaus beitragen werden, sind sowohl an ISOLDE am CERN als auch am TRIGA-Forschungsreaktor des Instituts für Kernchemie der Johannes Gutenberg-Universität in Vorbereitung.

Die Arbeiten wurden von der Helmholtz-Gemeinschaft, der Max-Planck-Gesellschaft sowie vom Bundesministerium für Bildung und Forschung (BMBF) und der Carl-Zeiss-Stiftung gefördert.

Veröffentlichung:
A. Krieger, K. Blaum, M. L. Bissell, N. Frömmgen, Ch. Geppert, M. Hammen, K. Kreim, M. Kowalska, J. Krämer, T. Neff, R. Neugart, G. Neyens, W. Nörtershäuser, Ch. Novot-ny, R. Sánchez, and D. T. Yordanov
Nuclear Charge Radius of 12Be
Physical Review Letters, 06. April 2012
DOI 10.1103/PhysRevLett.108.142501

Weitere Informationen:
Prof. Dr. Wilfried Nörtershäuser
Institut für Kernchemie
Johannes Gutenberg-Universität Mainz (JGU)
D 55099 Mainz
Tel. +49 6131 39-25881
Fax +49 6131 39-27039
E-Mail: noerters@uni-mainz.de

Petra Giegerich | idw
Weitere Informationen:
http://www.uni-mainz.de/FB/Chemie/AK-Noertershaeuser/de/index.html
http://www.kernchemie.uni-mainz.de/
http://prl.aps.org/abstract/PRL/v108/i14/e142501

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau
17.11.2017 | Universität Ulm

nachricht Zwei verdächtigte Sterne unschuldig an mysteriösem Antiteilchen-Überschuss
17.11.2017 | Max-Planck-Institut für Kernphysik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Im Focus: «Kosmische Schlange» lässt die Struktur von fernen Galaxien erkennen

Die Entstehung von Sternen in fernen Galaxien ist noch weitgehend unerforscht. Astronomen der Universität Genf konnten nun erstmals ein sechs Milliarden Lichtjahre entferntes Sternensystem genauer beobachten – und damit frühere Simulationen der Universität Zürich stützen. Ein spezieller Effekt ermöglicht mehrfach reflektierte Bilder, die sich wie eine Schlange durch den Kosmos ziehen.

Heute wissen Astronomen ziemlich genau, wie sich Sterne in der jüngsten kosmischen Vergangenheit gebildet haben. Aber gelten diese Gesetzmässigkeiten auch für...

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Pflanzenvielfalt von Wäldern aus der Luft abbilden

Produktivität und Stabilität von Waldökosystemen hängen stark von der funktionalen Vielfalt der Pflanzengemeinschaften ab. UZH-Forschenden gelang es, die Pflanzenvielfalt von Wäldern durch Fernerkundung mit Flugzeugen in verschiedenen Massstäben zu messen und zu kartieren – von einzelnen Bäumen bis hin zu ganzen Artengemeinschaften. Die neue Methode ebnet den Weg, um zukünftig die globale Pflanzendiversität aus der Luft und aus dem All zu überwachen.

Ökologische Studien zeigen, dass die Pflanzenvielfalt zentral ist für das Funktionieren von Ökosys-temen. Wälder mit einer höheren funktionalen Vielfalt –...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungen

Roboter für ein gesundes Altern: „European Robotics Week 2017“ an der Frankfurt UAS

17.11.2017 | Veranstaltungen

Börse für Zukunftstechnologien – Leichtbautag Stade bringt Unternehmen branchenübergreifend zusammen

17.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungsnachrichten

IHP präsentiert sich auf der productronica 2017

17.11.2017 | Messenachrichten

Roboter schafft den Salto rückwärts

17.11.2017 | Innovative Produkte