Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Elementarteilchenphysik: 3,2 Millionen für Forschung am Large-Hadron-Collider

21.08.2012
Das Institut für Experimentalphysik der Universität Hamburg erhält in den kommenden drei Jahren vom Bundesministerium für Bildung und Forschung (BMBF) insgesamt fast 3,2 Millionen Euro für Grundlagenforschung am Teilchenbeschleuniger Large-Hadron-Collider (LHC).
Dieser ist am Europäischen Zentrum für Teilchenphysik (CERN) in Genf angesiedelt. Ziel der Forschung ist es, die grundlegenden Bausteine der Natur und deren Wechselwirkungen zu untersuchen.

Der LHC befindet sich in einem unterirdischen Tunnel, in dem auf einer Strecke von 27 Kilometern Protonen beschleunigt und dann mit enormer Energie zur Kollision gebracht werden. Die dabei entstehenden Elementarteilchen werden mit großen, hochkomplexen Detektoren nachgewiesen und ausgemessen. Einer davon ist der Compact Muon Solenoid-Detektor (CMS), an dessen Aufbau und Betrieb die Universität Hamburg beteiligt ist. Das CMS-Experiment ist eines der zwei großen Experimente am LHC.

Die Analyse der aufgezeichneten Daten erlaubt nicht nur Rückschlüsse auf den Aufbau der Materie selbst, sondern auch auf die Entstehung und das Schicksal unseres Universums. So gelang durch diese Analysen am LHC kürzlich der spektakuläre Nachweis eines neuen Teilchens, bei dem es sich möglicherweise um das lange gesuchte Higgs-Boson handelt. Dieses spielt für die Erklärung der Masse in den physikalischen Gesetzen eine entscheidende Rolle.

Das Institut für Experimentalphysik mit den Arbeitsgruppen von Prof. Dr. Erika Garutti, Prof. Dr. Johannes Haller, Jun.-Prof. Dr. Christian Oliver Sander und Prof. Dr. Peter Schleper ist bereits seit einigen Jahren Mitglied der internationalen CMS-Kollaboration. In der Aufbau-Phase des Detektors haben die Hamburger Physikerinnen und Physiker unter anderem an der Konstruktion besonders hochauflösender Silizium-Detektoren mitgearbeitet und Computerfarmen für die weltweite Datenanalyse aufgebaut.

Die nun bewilligten Mittel stellt das Bundesministerium für den weiteren Betrieb des Experiments, die Analyse der aufgezeichneten Daten und für den zukünftigen Ausbau des Detektors zur Verfügung. Dabei kommt der Beschäftigung von Nachwuchswissenschaftlerinnen und Nachwuchswissenschaftlern eine besondere Bedeutung zu. Die Förderung erfolgt im Rahmen der sogenannten Verbundforschung. Damit unterstützt das BMBF die universitäre Grundlagenforschung an Großgeräten wie dem LHC. Die Hamburger Förderung ist Teil des Forschungsschwerpunktes „FSP102 – Elementarteilchenphysik mit dem CMS-Experiment“, an dem auch die RWTH Aachen, das Karlsruher Institut für Technologie (KIT) und das Deutsche Elektronen Synchrotron (DESY) beteiligt sind.

Für Rückfragen:

Prof. Dr. Peter Schleper
Institut für Experimentalphysik
Tel.: 040.8998-2957
E-Mail: Peter.Schleper@physik.uni-hamburg.de

Prof. Dr. Johannes Haller
Institut für Experimentalphysik
Tel.: 040.8998-4710
E-Mail: Johannes.Haller@physik.uni-hamburg.de

Birgit Kruse | idw
Weitere Informationen:
http://www.uni-hamburg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Auf dem Weg zur optischen Kernuhr
19.04.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht Laser erzeugt Magnet – und radiert ihn wieder aus
18.04.2018 | Helmholtz-Zentrum Dresden-Rossendorf

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gammastrahlungsblitze aus Plasmafäden

Neuartige hocheffiziente und brillante Quelle für Gammastrahlung: Anhand von Modellrechnungen haben Physiker des Heidelberger MPI für Kernphysik eine neue Methode für eine effiziente und brillante Gammastrahlungsquelle vorgeschlagen. Ein gigantischer Gammastrahlungsblitz wird hier durch die Wechselwirkung eines dichten ultra-relativistischen Elektronenstrahls mit einem dünnen leitenden Festkörper erzeugt. Die reichliche Produktion energetischer Gammastrahlen beruht auf der Aufspaltung des Elektronenstrahls in einzelne Filamente, während dieser den Festkörper durchquert. Die erreichbare Energie und Intensität der Gammastrahlung eröffnet neue und fundamentale Experimente in der Kernphysik.

Die typische Wellenlänge des Lichtes, die mit einem Objekt des Mikrokosmos wechselwirkt, ist umso kürzer, je kleiner dieses Objekt ist. Für Atome reicht dies...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Wie schwingt ein Molekül, wenn es berührt wird?

Physiker aus Regensburg, Kanazawa und Kalmar untersuchen Einfluss eines äußeren Kraftfeldes

Physiker der Universität Regensburg (Deutschland), der Kanazawa University (Japan) und der Linnaeus University in Kalmar (Schweden) haben den Einfluss eines...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Nachhaltige und innovative Lösungen

19.04.2018 | HANNOVER MESSE

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungsnachrichten

Auf dem Weg zur optischen Kernuhr

19.04.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics