Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Elementarteilchen im Paartanz

16.08.2010
Forscher des Berliner Max-Born-Instituts messen die Position von Elektronen und Protonen während einer chemischen Reaktion direkt mit ultrakurzen Röntgenblitzen.

Eine chemische Reaktion erzeugt aus einem oder mehreren Ausgangsstoffen neue Substanzen. Auf der Ebene der beteiligten Moleküle ändert sich dabei die räumliche Anordnung von Elektronen und Atomkernen. Während man die Struktur der ursprünglichen und der erzeugten Moleküle häufig gut bestimmen kann, sind die Strukturen und molekularen Bewegungen während der Reaktion meist unbekannt. Ihre Kenntnis ist für ein genaues Verständnis der Reaktion aber unverzichtbar.

Ein Traum ist deshalb das "Reaktionsmikroskop", mit dem sich Moleküle während einer Reaktion beobachten lassen. Die technologischen Herausforderungen für solch ein ultraschnelles „Kino“ sind in jüngster Zeit erfolgreich gemeistert worden. Forscher am Berliner Max-Born-Institut haben jetzt mit Hilfe von Röntgenimpulsen eine chemische Reaktion in bewegten Bildern auf atomaren Längen- und Zeit-Skalen, also im Bereich von 10 hoch -10 Metern und 10 hoch -13 Sekunden, dargestellt.

Michael Wörner, Flavio Zamponi, Zunaira Ansari, Jens Dreyer, Benjamin Freyer, Mirabelle Premont-Schwarz und Thomas Elsässer berichten in der neuesten Ausgabe des Journal of Chemical Physics [1] über die direkt zeitaufgelöste Beobachtung einer chemischen Reaktion in Ammoniumsulfat-Kristallen [(NH4)2SO4]. Ausgehend von einem Kurzpuls-Lasersystem der neuesten Generation erzeugten sie einen 50 Femtosekunden (1 fs = 10 hoch -15 Sekunden) langen blauen Lichtblitz, der die chemische Reaktion auslöste. Nur minimal zeitversetzt schickten sie einen synchronisierten 100 fs langen Röntgenblitz hinterher, mit dem sie mit hoher räumlicher Auflösung das Geschehen abbilden konnten [2]. Der Röntgenimpuls wird dabei an einem Pulver aus kleinen Kristallen gebeugt (sog. Debye-Scherrer-Methode [3]). Aus der Vielzahl gleichzeitig gemessener Beugungssignale konnten die Physiker die momentanen atomaren Abstände im Kristall und die dreidimensionale Verteilung der Elektronen innerhalb des Kristalls rekonstruieren. Durch die Aufnahme von Röntgen-Schnappschüssen zu verschiedenen Zeiten nach dem Auslösen der Reaktion entstand mit Hilfe des Stroboskop-Effekts also ein bewegter Film.

Völlig überraschend beobachteten die Berliner Physiker eine reversible chemische Reaktion, die sich grundsätzlich von den bekannten langsamen, d.h. thermischen Phasenübergängen des Ammoniumsulfats unterscheidet. Der blaue Lichtblitz führt dazu, dass zunächst das Ammonium-Ion (NH4)+ ein Proton, also eine positive Ladung, und das Sulfat-Ion (SO4)- ein Elektron, eine negative Ladung, abgeben. Die freigesetzten Elementarteilchen vereinigen sich dann zu einem Wasserstoff-Atom, welches schließlich zwischen zwei deutlich voneinander entfernten Positionen innerhalb des Kristalls hin und her springt. Diese Bewegung ist in dem beigefügten Film dargestellt. Die Kreise zeigen die ursprüngliche Position der Protonen an. Die roten Flecke zeigen die Bewegung der Wasserstoff-Atome im Anschluss an die chemische Reaktion.

Die hier erstmals demonstrierte Röntgen-Pulverbeugung im Femtosekunden-Zeitbereich lässt sich auf viele weitere Systeme anwenden, etwa um die Eigenschaften molekularer Magnete aufzuklären oder die Elektronenbewegungen in (bio)molekularen Lichtempfängern zu verfolgen, die in Solarzellen eingesetzt werden.

[1] M. Woerner et al., Concerted electron and proton transfer in ionic crystals mapped by femtosecond x-ray powder diffraction, J. Chem. Phys. 133, 064509 (2010).

[2] F. Zamponi, Z. Ansari, M. Woerner, and T. Elsaesser, Femtosecond powder diffraction with a laser-driven hard X-ray source, Opt. Express 18, 947 (2010).

[3] P. Debye and P. Scherrer, Interferenzen an regellos orientierten Teilchen im Röntgenlicht. I., Phys. Zeitschr. 17, 277 (1916).

Kontakt:
Dr. Michael Wörner (Tel. 030-6392-1470, email: woerner@mbi-berlin.de),
Prof. Thomas Elsaesser (Tel. 030-6392-1400, email: elsasser@mbi-berlin.de)
Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie

Christine Vollgraf | idw
Weitere Informationen:
http://www.mbi-berlin.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Lange Speicherung photonischer Quantenbits für globale Teleportation
13.12.2017 | Max-Planck-Institut für Quantenoptik

nachricht Einmal durchleuchtet – dreifacher Informationsgewinn
11.12.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Materialinnovationen 2018 – Werkstoff- und Materialforschungskonferenz des BMBF

13.12.2017 | Veranstaltungen

Innovativer Wasserbau im 21. Jahrhundert

13.12.2017 | Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rest-Spannung trotz Megabeben

13.12.2017 | Geowissenschaften

Computermodell weist den Weg zu effektiven Kombinationstherapien bei Darmkrebs

13.12.2017 | Medizin Gesundheit

Winzige Weltenbummler: In Arktis und Antarktis leben die gleichen Bakterien

13.12.2017 | Geowissenschaften