Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Elektrostatik dominiert Ladungstransfer zwischen organischen Halbleitern und Metallen

20.06.2014

Organische Halbleiter ermöglichen flexible, biegsame Bildschirme (OLEDs), Solarzellen (OPVCs) und andere interessante Anwendungen.

Ein Problem dabei ist aber die Grenzfläche zwischen den metallischen Kontakten und dem organischen Halbleitermaterial, an der unerwünschte Verluste auftreten. Nun hat Dr. Martin Oehzelt, HZB, gezeigt, worauf es ankommt, wenn diese Verluste zwischen Metall und organischem Halbleiter minimiert werden sollen.


Eine ultradünne dielektrische Schicht kann die Energieniveaus im organischen Material (blau) und im Metall (schwarz, Fermi-level) verbinden und den Übergang der Ladungsträger erleichtern.

M. Oehzelt/HZB

Insbesondere erklärt sein Modell auch, warum eine dünne, elektrisch isolierende Schicht zwischen den beiden Materialien den Übergang von Ladungsträgern sogar erleichtern kann. Seine Ergebnisse sind nun in Nature Communications veröffentlicht.

Aktuell gibt es viele unterschiedliche Ansätze, um diesen Übergang zwischen organischen Halbleitermaterialien und den metallischen Kontakten zu beschreiben. Diese teilweise widersprüchlichen Theorien, von denen aber keine in vollem Umfang für alle Fälle gültig ist, hat Oehzelt nun vereinheitlicht und ein universelles Modell entwickelt, das vor allem auf dem elektrostatischen Potential basiert, das von den Ladungsträgern im Metall und im organischen Halbleiter hervorgerufen wird.

„Ich habe die Auswirkungen der Ladungsträgerverteilung auf die elektronischen Zustände an der Grenzfläche berechnet und wie diese Veränderung auf die Ladungsträgerverteilung zurückwirkt“, erklärt er. Oehzelt forscht zurzeit als Postdoktorand mit Dr. Georg Heimel bei Prof. Dr. Norbert Koch, die an der Humboldt-Universität zu Berlin und am Helmholtz-Zentrum Berlin arbeiten.

Solche Berechnungen hatte bislang vor Martin Oehzelt noch niemand so konsequent durchgeführt. Dabei stellte Oehzelt fest: „Für mich war überraschend, dass hier die quantenphysikalische Ebene gar nicht so stark in Erscheinung tritt. Die elektrostatischen Effekte überwiegen! Das sehen wir auch daran, wie gut das Modell zu Messergebnissen passt.“ Am Beispiel von Pentazen, einem gebräuchlichen organischen Halbleiter, hat Oehzelt die Vorhersagen des Modells zu den Grenzflächenverlusten quantitativ überprüft.

Dabei entscheidet die Energieverteilung der elektronischen Zustände im organischen Halbleiter darüber, welche Mindestbarriere die Ladungsträger beim Übergang vom oder in das Metall überwinden müssen. Die Berechnung zeigt, dass auch die Form dieser Energiebarrieren dabei variieren kann, von einer Stufe bis hin zu langsam und kontinuierlich ansteigenden Kurven, die zu wesentlich weniger Verlusten führen.

Dies kann dadurch erreicht werden, dass man zwischen dem organischen Halbleiter und dem Metall eine hauchdünne isolierende Schicht einfügt. Entgegen der allgemeinen Erwartung wird also durch Einfügen eines Isolators der elektrische Kontakt verbessert.

Die Ergebnisse dieser Arbeit könnten es deutlich erleichtern, Grenzflächen und Kontakte zu optimieren und damit effizientere organische Halbleiterbauelemente zu entwickeln.

Die Arbeit ist nun in Nature Communications veröffentlicht.
doi 10.1038/ncomms5174

Presseanfragen an:
Dr. Antonia Rötger
Kommunikation
Tel.: 030-8062-43733
antonia.roetger@helmholtz-berlin.de

Weitere Informationen:

http://www.nature.com/ncomms/2014/140618/ncomms5174/full/ncomms5174.html

Dr. Antonia Rötger | Helmholtz-Zentrum
Weitere Informationen:
http://www.helmholtz-berlin.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Heiß & kalt – Gegensätze ziehen sich an
25.04.2017 | Universität Wien

nachricht Astronomen-Team findet Himmelskörper mit „Schmauchspuren“
25.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Chemnitz präsentiert weltweit einzigartige Pilotanlage für nachhaltigen Leichtbau

Wickelprinzip umgekehrt: Orbitalwickeltechnologie soll neue Maßstäbe in der großserientauglichen Fertigung komplexer Strukturbauteile setzen

Mitarbeiterinnen und Mitarbeiter des Bundesexzellenzclusters „Technologiefusion für multifunktionale Leichtbaustrukturen" (MERGE) und des Instituts für...

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Tag der Immunologie - 29. April 2017

28.04.2017 | Veranstaltungen

Kampf gegen multiresistente Tuberkulose – InfectoGnostics trifft MYCO-NET²-Partner in Peru

28.04.2017 | Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Über zwei Millionen für bessere Bordnetze

28.04.2017 | Förderungen Preise

Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers

28.04.2017 | Biowissenschaften Chemie

Wie Pflanzen ihre Zucker leitenden Gewebe bilden

28.04.2017 | Biowissenschaften Chemie