Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Elektronenwirbel in der Strudelgalaxie

20.08.2014

Ein europäisches Team von Astronomen hat die Galaxie M51 ("Strudelgalaxie") mit dem LOFAR-Teleskop beobachtet und das bisher empfindlichste Bild von einer Galaxie bei Frequenzen unterhalb von 1 GHz erstellt.

Mit der hohen Empfindlichkeit von LOFAR konnte die Scheibe der Galaxie wesentlich weiter bis in die Außenbereiche abgebildet werden als zuvor; es konntenschnelle kosmische Elektronen und Magnetfelder bis in eine Entfernung von 40.000 Lichtjahren vom Zentrum von M51 nachgewiesen werden.

Strudelgalaxie M51

LOFAR-Radiokarte der Strudelgalaxie M51 und ihrer Umgebung bei einer Frequenz von 115 bis 175 MHz. Das abgebildete Feld umfasst 4 mal 2,6 Grad. Inlet: Überlagerung mit optischem Bild.

David Mulcahy et al., Astronomy & Astrophysics

LOFAR-Stationen

LOFAR-Stationen in Europa.

ASTRON, Niederlande

Mit der hohen Winkelauflösung von LOFAR werden die Spiralarme der Galaxie deutlich getrennt sichtbar. Dabei treten Magnetfelder und kosmische Elektronen in den Spiralarmen selbst am stärksten hervor. Das Aussehen von Galaxien im Radiobereich ist sehr unterschiedlich zu ihrem optischen Erscheinungsbild. Während im Optischen das sichtbare Licht von den Sternen dominiert, zeigen Radiowellen zwei Bestandteile von Galaxien, die von optischen Teleskopen nicht erfasst werden können, nämlich Magnetfelder und bis fast auf Lichtgeschwindigkeit beschleunigte Elektronen.

Welche Rolle sie für die Stabilität und die Entwicklung von Galaxien spielen, wird verstärkt von den Experten diskutiert. Die Elektronen sind Partikel der sogenannten kosmischen Strahlung, die in den von gigantischen Supernova-Explosionen verursachten Stoßwellen erzeugt werden. Magnetfelder wiederum werden durch Dynamo-Prozesse erzeugt, die von der Bewegung des Gases in der Galaxie angetrieben werden.

Wenn Elektronen sich auf spiralförmiger Bahn um Magnetfeldlinien bewegen, werden Radiowellen abgestrahlt, die auch als Synchrotronstrahlung bezeichnet werden. Die Intensität der Strahlung steigt dabei mit der Anzahl und Energie der Elektronen sowie mit der Stärke des Magnetfeldes an.

Viele Jahrzehnte lang war die Radioastronomie nicht dazu in der Lage, die Radiostrahlung bei niedrigen Frequenzen unterhalb von 300 Megahertz (MHz) vollständig auszuwerten, da die Ionosphäre der Erde ein Hindernis speziell für niederfrequente Radiowellen darstellt (und unterhalb von etwa 10 MHz sogar komplett undurchlässig wird).

Es erfordert ausgeklügelte Methoden der Datenverarbeitung und superschnelle Computer, um die Störungen der Ionosphäre zu korrigieren. Aufgrund dieser technischen Herausforderungen sind Spiralgalaxien bisher nur sehr selten bei niedrigen Frequenzen untersucht worden. Lediglich Beobachtungen bei sehr niedriger Winkelauflösung und ohne jegliche Details standen bis jetzt zur Verfügung.

Das Untersuchungsobjekt in der Dissertation von David Mulcahy ist die großartige Spiralgalaxie Messier 51 in einer Entfernung von ungefähr 30 Millionen Lichtjahren, die bereits in einem kleinen optischen Teleskop in Richtung des Sternbilds Jagdhunde (Canes Venatici) sichtbar wird (in unmittelbarer Umgebung des „Großen Wagens“ am Nordhimmel).

„Radiowellen bei niedriger Frequenz sind deshalb so wichtig, weil sie Informationen enthalten über Elektronen bei relativ niedrigen Energien, die in wesentlich größere Abstände von ihren Ursprungsorten in den Spiralarmen gelangen können, und dadurch die Magnetfelder in den äußeren Bereichen der Galaxien ausleuchten“, sagt David Mulcahy. „Wir möchten gern wissen, ob Magnetfelder von den Galaxien abgestoßen werden und wie stark sie in den äußeren Bereichen der Galaxien noch sind.“

„Dieses tolle Bild von M51 in Verbindung mit den daraus gewonnenen neuen Erkenntnissen zeigt den enormen Fortschritt, der bei niedrigen Radiofrequenzen mit dem LOFAR-Teleskop erreicht werden kann“, ergänzt Anna Scaife von der Universität Southampton, Ko-Autorin der Veröffentlichung. „Die Enthüllung der Geheimnisse von Magnetfeldern ist entscheidend für das Verständnis dafür, wie unser Universum funktioniert. Viel zu lange konnten die großen Fragen zu den Magnetfeldern einfach nicht durch Beobachtungen überprüft werden. Diese neue Epoche der Radioastronomie ist sehr aufregend.“

Das ”Low Frequency Array” (LOFAR) wurde entworfen und konstruiert von ASTRON in den Niederlanden. Es ist ein Radioteleskop völlig neuen Typs, das den Zugang zu sehr niedrigen Radiofrequenzen ermöglicht. LOFAR erforscht einen bisher kaum erfassten Frequenzbereich unterhalb von 240 MHz und besteht aus einer Vielzahl von kleinen Antennen (Dipolen) einfacher Bauart ohne jegliche bewegliche Teile.

LOFAR setzt sich zusammen aus 38 Stationen in den Niederlanden, sechs Stationen in Deutschland und jeweils einer Station in Großbritannien, Frankreich und Schweden. Das neuartige Prinzip besteht aus der Online-Verbindung von Signalen aus allen Stationen in einem leistungsstarken Computercluster in der Universität Groningen (Niederlande).

Es haben auch bereits Beobachtungen der Galaxie M51 mit LOFAR bei Radiofrequenzen von 30 bis 80 MHz, also unterhalb des UKW-Bereichs, stattgefunden. „Das eröffnet uns ein weiteres neues Fenster zum Universum, und wir wissen noch nicht, wie die Galaxien in diesem Frequenzbereich aussehen“, schließt Rainer Beck, der das Projekt von David Mulcahy betreut hat. „Vielleicht können wir sogar eine magnetische Verbindung der Galaxien zum intergalaktischen Raum erfassen. Das wäre ein Schlüsselexperiment zur Vorbereitung des geplanten „Square Kilometre Arrays“ (SKA), das uns zeigen könnte, wo und wie kosmische Magnetfelder erzeugt werden.“

Originalveröffentlichung:

The nature of the low-frequency emission of M51: First observations of a nearby galaxy with LOFAR, by D.D. Mulcahy, A. Horneffer, R. Beck, et al., 2014 Astronomy & Astrophysics (DOI: 10.1051/0004-6361/201424187).

Kontakt:

Dr. Rainer Beck
Max-Planck-Institut für Radioastronomie.
Fon: +49(0)228-525-323
E-mail: rbeck@mpifr-bonn.mpg.de

Dr. David Mulcahy,
University of Southampton.
Fon: +44(0)23-8059-2446
E-mail: D.D.Mulcahy@soton.ac.uk

Dr. Norbert Junkes,
Presse- und Öffentlichkeitsarbeit,
Max-Planck-Institut für Radioastronomie.
Fon: +49(0)228-525-399
E-mail: njunkes@mpifr-bonn.mpg.de

Weitere Informationen:

http://www.mpifr-bonn.mpg.de/pressemeldungen/2014/9

Norbert Junkes | Max-Planck-Institut

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Reisetauglicher Laser
22.01.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht Magnetische Kontrolle per Handzeichen: Team entwickelt elektronische „Haut“ für virtuelle Realität
22.01.2018 | Helmholtz-Zentrum Dresden-Rossendorf

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vollmond-Dreierlei am 31. Januar 2018

Am 31. Januar 2018 fallen zum ersten Mal seit dem 30. Dezember 1982 "Supermond" (ein Vollmond in Erdnähe), "Blutmond" (eine totale Mondfinsternis) und "Blue Moon" (ein zweiter Vollmond im Kalendermonat) zusammen - Beobachter im deutschen Sprachraum verpassen allerdings die sichtbaren Phasen der Mondfinsternis.

Nach den letzten drei Vollmonden am 4. November 2017, 3. Dezember 2017 und 2. Januar 2018 ist auch der bevorstehende Vollmond am 31. Januar 2018 ein...

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

Veranstaltungen

15. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

22.01.2018 | Veranstaltungen

Transferkonferenz Digitalisierung und Innovation

22.01.2018 | Veranstaltungen

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungen

VideoLinks Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

15. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

22.01.2018 | Veranstaltungsnachrichten

Forschungsteam schafft neue Möglichkeiten für Medizin und Materialwissenschaft

22.01.2018 | Biowissenschaften Chemie

Ein Haus mit zwei Gesichtern

22.01.2018 | Architektur Bauwesen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics