Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Elektronenwirbel in der Strudelgalaxie

20.08.2014

Ein europäisches Team von Astronomen hat die Galaxie M51 ("Strudelgalaxie") mit dem LOFAR-Teleskop beobachtet und das bisher empfindlichste Bild von einer Galaxie bei Frequenzen unterhalb von 1 GHz erstellt.

Mit der hohen Empfindlichkeit von LOFAR konnte die Scheibe der Galaxie wesentlich weiter bis in die Außenbereiche abgebildet werden als zuvor; es konntenschnelle kosmische Elektronen und Magnetfelder bis in eine Entfernung von 40.000 Lichtjahren vom Zentrum von M51 nachgewiesen werden.

Strudelgalaxie M51

LOFAR-Radiokarte der Strudelgalaxie M51 und ihrer Umgebung bei einer Frequenz von 115 bis 175 MHz. Das abgebildete Feld umfasst 4 mal 2,6 Grad. Inlet: Überlagerung mit optischem Bild.

David Mulcahy et al., Astronomy & Astrophysics

LOFAR-Stationen

LOFAR-Stationen in Europa.

ASTRON, Niederlande

Mit der hohen Winkelauflösung von LOFAR werden die Spiralarme der Galaxie deutlich getrennt sichtbar. Dabei treten Magnetfelder und kosmische Elektronen in den Spiralarmen selbst am stärksten hervor. Das Aussehen von Galaxien im Radiobereich ist sehr unterschiedlich zu ihrem optischen Erscheinungsbild. Während im Optischen das sichtbare Licht von den Sternen dominiert, zeigen Radiowellen zwei Bestandteile von Galaxien, die von optischen Teleskopen nicht erfasst werden können, nämlich Magnetfelder und bis fast auf Lichtgeschwindigkeit beschleunigte Elektronen.

Welche Rolle sie für die Stabilität und die Entwicklung von Galaxien spielen, wird verstärkt von den Experten diskutiert. Die Elektronen sind Partikel der sogenannten kosmischen Strahlung, die in den von gigantischen Supernova-Explosionen verursachten Stoßwellen erzeugt werden. Magnetfelder wiederum werden durch Dynamo-Prozesse erzeugt, die von der Bewegung des Gases in der Galaxie angetrieben werden.

Wenn Elektronen sich auf spiralförmiger Bahn um Magnetfeldlinien bewegen, werden Radiowellen abgestrahlt, die auch als Synchrotronstrahlung bezeichnet werden. Die Intensität der Strahlung steigt dabei mit der Anzahl und Energie der Elektronen sowie mit der Stärke des Magnetfeldes an.

Viele Jahrzehnte lang war die Radioastronomie nicht dazu in der Lage, die Radiostrahlung bei niedrigen Frequenzen unterhalb von 300 Megahertz (MHz) vollständig auszuwerten, da die Ionosphäre der Erde ein Hindernis speziell für niederfrequente Radiowellen darstellt (und unterhalb von etwa 10 MHz sogar komplett undurchlässig wird).

Es erfordert ausgeklügelte Methoden der Datenverarbeitung und superschnelle Computer, um die Störungen der Ionosphäre zu korrigieren. Aufgrund dieser technischen Herausforderungen sind Spiralgalaxien bisher nur sehr selten bei niedrigen Frequenzen untersucht worden. Lediglich Beobachtungen bei sehr niedriger Winkelauflösung und ohne jegliche Details standen bis jetzt zur Verfügung.

Das Untersuchungsobjekt in der Dissertation von David Mulcahy ist die großartige Spiralgalaxie Messier 51 in einer Entfernung von ungefähr 30 Millionen Lichtjahren, die bereits in einem kleinen optischen Teleskop in Richtung des Sternbilds Jagdhunde (Canes Venatici) sichtbar wird (in unmittelbarer Umgebung des „Großen Wagens“ am Nordhimmel).

„Radiowellen bei niedriger Frequenz sind deshalb so wichtig, weil sie Informationen enthalten über Elektronen bei relativ niedrigen Energien, die in wesentlich größere Abstände von ihren Ursprungsorten in den Spiralarmen gelangen können, und dadurch die Magnetfelder in den äußeren Bereichen der Galaxien ausleuchten“, sagt David Mulcahy. „Wir möchten gern wissen, ob Magnetfelder von den Galaxien abgestoßen werden und wie stark sie in den äußeren Bereichen der Galaxien noch sind.“

„Dieses tolle Bild von M51 in Verbindung mit den daraus gewonnenen neuen Erkenntnissen zeigt den enormen Fortschritt, der bei niedrigen Radiofrequenzen mit dem LOFAR-Teleskop erreicht werden kann“, ergänzt Anna Scaife von der Universität Southampton, Ko-Autorin der Veröffentlichung. „Die Enthüllung der Geheimnisse von Magnetfeldern ist entscheidend für das Verständnis dafür, wie unser Universum funktioniert. Viel zu lange konnten die großen Fragen zu den Magnetfeldern einfach nicht durch Beobachtungen überprüft werden. Diese neue Epoche der Radioastronomie ist sehr aufregend.“

Das ”Low Frequency Array” (LOFAR) wurde entworfen und konstruiert von ASTRON in den Niederlanden. Es ist ein Radioteleskop völlig neuen Typs, das den Zugang zu sehr niedrigen Radiofrequenzen ermöglicht. LOFAR erforscht einen bisher kaum erfassten Frequenzbereich unterhalb von 240 MHz und besteht aus einer Vielzahl von kleinen Antennen (Dipolen) einfacher Bauart ohne jegliche bewegliche Teile.

LOFAR setzt sich zusammen aus 38 Stationen in den Niederlanden, sechs Stationen in Deutschland und jeweils einer Station in Großbritannien, Frankreich und Schweden. Das neuartige Prinzip besteht aus der Online-Verbindung von Signalen aus allen Stationen in einem leistungsstarken Computercluster in der Universität Groningen (Niederlande).

Es haben auch bereits Beobachtungen der Galaxie M51 mit LOFAR bei Radiofrequenzen von 30 bis 80 MHz, also unterhalb des UKW-Bereichs, stattgefunden. „Das eröffnet uns ein weiteres neues Fenster zum Universum, und wir wissen noch nicht, wie die Galaxien in diesem Frequenzbereich aussehen“, schließt Rainer Beck, der das Projekt von David Mulcahy betreut hat. „Vielleicht können wir sogar eine magnetische Verbindung der Galaxien zum intergalaktischen Raum erfassen. Das wäre ein Schlüsselexperiment zur Vorbereitung des geplanten „Square Kilometre Arrays“ (SKA), das uns zeigen könnte, wo und wie kosmische Magnetfelder erzeugt werden.“

Originalveröffentlichung:

The nature of the low-frequency emission of M51: First observations of a nearby galaxy with LOFAR, by D.D. Mulcahy, A. Horneffer, R. Beck, et al., 2014 Astronomy & Astrophysics (DOI: 10.1051/0004-6361/201424187).

Kontakt:

Dr. Rainer Beck
Max-Planck-Institut für Radioastronomie.
Fon: +49(0)228-525-323
E-mail: rbeck@mpifr-bonn.mpg.de

Dr. David Mulcahy,
University of Southampton.
Fon: +44(0)23-8059-2446
E-mail: D.D.Mulcahy@soton.ac.uk

Dr. Norbert Junkes,
Presse- und Öffentlichkeitsarbeit,
Max-Planck-Institut für Radioastronomie.
Fon: +49(0)228-525-399
E-mail: njunkes@mpifr-bonn.mpg.de

Weitere Informationen:

http://www.mpifr-bonn.mpg.de/pressemeldungen/2014/9

Norbert Junkes | Max-Planck-Institut

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Quantenmechanik ist komplex genug – vorerst …
21.04.2017 | Universität Wien

nachricht Tief im Inneren von M87
20.04.2017 | Max-Planck-Institut für Radioastronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Immunzellen helfen bei elektrischer Reizleitung im Herzen

Erstmals elektrische Kopplung von Muskelzellen und Makrophagen im Herzen nachgewiesen / Erkenntnisse könnten neue Therapieansätze bei Herzinfarkt und Herzrhythmus-Störungen ermöglichen / Publikation am 20. April 2017 in Cell

Makrophagen, auch Fresszellen genannt, sind Teil des Immunsystems und spielen eine wesentliche Rolle in der Abwehr von Krankheitserregern und bei der...

Im Focus: Tief im Inneren von M87

Die Galaxie M87 enthält ein supermassereiches Schwarzes Loch von sechs Milliarden Sonnenmassen im Zentrum. Ihr leuchtkräftiger Jet dominiert das beobachtete Spektrum über einen Frequenzbereich von 10 Größenordnungen. Aufgrund ihrer Nähe, des ausgeprägten Jets und des sehr massereichen Schwarzen Lochs stellt M87 ein ideales Laboratorium dar, um die Entstehung, Beschleunigung und Bündelung der Materie in relativistischen Jets zu erforschen. Ein Forscherteam unter der Leitung von Silke Britzen vom MPIfR Bonn liefert Hinweise für die Verbindung von Akkretionsscheibe und Jet von M87 durch turbulente Prozesse und damit neue Erkenntnisse für das Problem des Ursprungs von astrophysikalischen Jets.

Supermassereiche Schwarze Löcher in den Zentren von Galaxien sind eines der rätselhaftesten Phänomene in der modernen Astrophysik. Ihr gewaltiger...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: Neu entdeckter Exoplanet könnte bester Kandidat für die Suche nach Leben sein

Supererde in bewohnbarer Zone um aktivitätsschwachen roten Zwergstern gefunden

Ein Exoplanet, der 40 Lichtjahre von der Erde entfernt einen roten Zwergstern umkreist, könnte in naher Zukunft der beste Ort sein, um außerhalb des...

Im Focus: Resistiver Schaltmechanismus aufgeklärt

Sie erlauben energiesparendes Schalten innerhalb von Nanosekunden, und die gespeicherten Informationen bleiben auf Dauer erhalten: ReRAM-Speicher gelten als Hoffnungsträger für die Datenspeicher der Zukunft.

Wie ReRAM-Zellen genau funktionieren, ist jedoch bisher nicht vollständig verstanden. Insbesondere die Details der ablaufenden chemischen Reaktionen geben den...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Smart-Data-Forschung auf dem Weg in die wirtschaftliche Praxis

21.04.2017 | Veranstaltungen

Baukultur: Mehr Qualität durch Gestaltungsbeiräte

21.04.2017 | Veranstaltungen

Licht - ein Werkzeug für die Laborbranche

20.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Intelligenter Werkstattwagen unterstützt Mensch in der Produktion

21.04.2017 | HANNOVER MESSE

Forschungszentrum Jülich auf der Hannover Messe 2017

21.04.2017 | HANNOVER MESSE

Smart-Data-Forschung auf dem Weg in die wirtschaftliche Praxis

21.04.2017 | Veranstaltungsnachrichten