Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Elektronenspins an Halbleiteroberfläche getrennt

29.05.2012
Neues Wissen über die Spins von Elektronen in Halbleitermaterialien: In einer aktuellen Publikation beschreiben Physiker der Uni Würzburg erstmals die Spin-Architektur einer ultradünnen Metallschicht auf einem Halbleiter. Das bedeutet einen weiteren Schritt hin zu extrem leistungsfähigen Computern.

Deutlich schnellere Computer wären möglich, wenn sich der Spin der Elektronen bei der Datenverarbeitung als Informationsträger nutzen ließe. Was der Spin ist? Der Spin verleiht dem Elektron über seine Ladung hinaus auch magnetische Eigenschaften. „Das kann man sich so vorstellen, als ob jedes Elektron einen winzig kleinen Elementarmagneten trägt, wie eine Kompassnadel“, sagt der Würzburger Physiker Jörg Schäfer.


Würzburger Physiker haben die Spin-Architektur einer Halbleiteroberfläche bestimmt. Dazu wurden die Elektronen durch Lichtanregung aus dem Material herausgelöst, so dass ihre Spin-Orientierung vermessen werden konnte. Grafik: Philipp Höpfner

Um den Spin für die Elektronik nutzen zu können, also um eine „Spintronik“ zu realisieren, müsste es gelingen, die in einem Halbleiterchip fließenden Elektronen nach ihrem Spin-Zustand zu ordnen, also ihre Spitzen gleich auszurichten. Diese Formation müssten die elementaren Magnetnadeln beibehalten, wenn sie als so genannte Spinströme auf die Reise durch das elektronische Bauteil geschickt werden.

Spin-Trennung klappt ohne Magnetfelder durch einen Trick

Seit langem ist bekannt, dass man die Spins durch Magnetfelder beeinflussen kann. Doch für Bauteilanwendungen wäre das vollkommen unpraktikabel. Daher wenden die Festkörperphysiker einen ausgeklügelten Trick an: Auf einen halbleitenden Festkörper wird eine ultradünne Metallschicht aufgedampft, die nur eine Atomlage dick ist. Darin sortieren sich die Elektronen von ganz allein in zwei Gruppen mit entgegengesetzter Magnetnadelorientierung.

Dieser Effekt fällt umso stärker aus, je schwerer die verwendeten Metallatome sind. „Diese automatische Spin-Trennung wollten wir in einem modellhaften Experiment erzeugen und genauer untersuchen“, erklärt Professor Ralph Claessen. Als besonders schweres Metall wählten die Würzburger Physiker Gold, das sie hauchfein auf ein Halbleiterplättchen aus Germanium aufdampften.

Enges Zusammenspiel von Theorie und Experiment

Die experimentellen Befunde zum Spin-Muster entsprechen sehr genau den Vorhersagen, welche die Würzburger Physik-Theoretiker um Professor Werner Hanke entwickelt haben. „Wir können die Spin-Anordnung im Halbleiter mathematisch modellieren und mit modernsten Rechnern sehr genaue praktische Vorhersagen machen", erläutert Hanke.

Experimentell nachgewiesen wird das Spin-Muster mit der Technik der Photoemission. Diese Messungen wurden am Paul-Scherrer-Institut in der Schweiz durchgeführt. Die Halbleiteroberfläche mit der Goldschicht wird dabei mit dem besonders intensiven Röntgenlicht eines Synchrotrons bestrahlt. Dadurch lösen sich Elektronen und fliegen – in Abhängigkeit von ihrem Spin – unter verschiedenen Winkeln aus der Probe heraus und werden mit Detektoren nachgewiesen.

Zwei Spinausrichtungen erstmals klar belegt

„Wir haben eine starke Aufspaltung der Spins in zwei Gruppen mit entgegengesetzter Orientierung der Magnetnadeln sowie ein spezielles Spin-Muster gefunden“, so Jörg Schäfer. Demnach zeigen alle Spins entweder aus der Oberfläche heraus oder in sie hinein. „Der Verdienst dieser Zusammenarbeit zwischen Theorie und Experiment ist es, erstmals das dreidimensionale Spin-Muster aufgeklärt zu haben“, sagt Ralph Claessen. Die Ergebnisse zeigen vor allem deutlich, dass die Trennung der Leitungselektronen nach ihrem Spin gut funktioniert. Damit lassen sie sich separat auf die Reise durch ein Metall schicken. Für die Spintronik ist das neues und wichtiges Grundlagenwissen.

Dieser Nachweis hat die Herausgeber des Fachjournals „Physical Review Letters“ regelrecht begeistert: Der Forschungserfolg aus Würzburg wird dem Fachpublikum vom Herausgeber als „Editor’s Suggestion“ zur Lektüre besonders empfohlen.

Arbeit im Rahmen einer DFG-Forschergruppe

Entstanden ist die Publikation aus der Würzburger Forschergruppe 1162, die seit 2009 mit rund drei Millionen Euro von der Deutschen Forschungsgemeinschaft (DFG) gefördert wird. Die Gruppe untersucht elektronische Quanteneffekte in Nanostrukturen; Ralph Claessen ist ihr Sprecher.

“Three-Dimensional Spin Rotations at the Fermi Surface of a Strongly Spin-Orbit Coupled Surface System”, P. Höpfner, J. Schäfer, A. Fleszar, J. H. Dil, B. Slomski, F. Meier, C. Loho, C. Blumenstein, L. Patthey, W. Hanke, and R. Claessen, Physical Review Letters 108, 186801 (2012), DOI 10.1103/PhysRevLett.108.186801

Kontakt

Prof. Dr. Ralph Claessen, Physikalisches Institut der Universität Würzburg, T (0931) 31-85732, claessen@physik.uni-wuerzburg.de

Robert Emmerich | Uni Würzburg
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Scharfe Röntgenblitze aus dem Atomkern
17.08.2017 | Max-Planck-Institut für Kernphysik, Heidelberg

nachricht Optische Technologien für schnellere Computer / „Licht“ mit Wespentaille
16.08.2017 | Universität Duisburg-Essen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie