Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Elektronenfotografie - Filme statt nur Schnappschüsse

11.07.2013
Physiker der Ludwig-Maximilians-Universität und des Max-Planck-Instituts für Quantenoptik entwickeln einen Laseraufbau, der es ermöglicht, Elektronenbewegungen zu filmen.

Elektronen sind flink; so flink, dass es schwer ist, sie zu fotografieren. Das Problem hat man zwar mittlerweile im Griff, doch erhält man bis heute nur einzelne Schnappschüsse von den Elementarteilchen.

Wie und wohin sich Elektronen über einen zusammenhängenden Zeitraum orientieren, ist bis heute nicht zu beobachten. Jetzt hat ein Team vom Labor für Attosekundenphysik (LAP) an der Ludwig-Maximilians-Universität (LMU) München und dem Max-Planck-Institut für Quantenoptik (MPQ) in Garching in Zusammenarbeit mit Forschern der Friedrich-Schiller-Universität Jena eine Laserkonfiguration entwickelt, mit deren Hilfe es möglich wird, die Bewegungen von Elektronen wie in einem Film zu verfolgen.

Dazu haben die Forscher mit einem Hochleistungslaser intensive und stabile Attosekunden-Pulszüge erzeugt, die sich pro Sekunde 78 Millionen Mal wiederholten. Jeder Pulszug besteht dabei aus rund 20 einzelnen Attosekunden-Lichtblitzen. Mit dieser hohen Frequenz lassen sich Elektronen, deren quantenmechanische Zustände sich sehr schnell ändern, effizienter als bisher aufzeichnen. Damit steht die Beobachtung dieser Elementarteilchen vor einer neuen Ära.

Eine besondere Spielart der Fotografie sind Stroboskopaufnahmen von bewegten Objekten. Dabei löst der Fotograf mehrmals einen Blitz aus, während er ein Bild nur einmal belichtet. Der Effekt ist spektakulär: Das Objekt wird in einem einzigen Bild mehrmals abgebildet, während es sich von einem Ort zum anderen bewegt.

In der Ultrakurzzeitphysik schaut man etwas neidisch auf solche konventionellen Stroboskopaufnahmen. Denn hier ist es bislang nur möglich, ultraschnelle Teilchen - etwa Elektronen - in Einzelbildern festzuhalten. Die Einzelbilder werden mithilfe von Lichtblitzen erzeugt, die über Laserpulse produziert werden. Man erhält dabei keinen Ablauf einer kompletten Bewegung, denn die quantenmechanischen Bewegungen von Elektronen sind attosekundenschnell – eine Attosekunde ist ein Milliardstel einer milliardstel Sekunde - und damit zu flink, um scharfe Schnappschüsse zu erhalten. Auch Elektronenkonfigurationen ändern sich innerhalb von Attosekunden.

Mit einer neuen Technik, die ein Team von Laserphysikern um Professor Ferencz Krausz und Dr. Ioachim Pupeza entwickelt hat, könnte es jetzt möglich werden, die Bewegungen von Quantenteilchen detaillierter und zeitaufgelöst aufzuzeichnen, ähnlich wie bei konventionellen Stroboskopaufnahmen.

Die Physiker haben es geschafft, mit Hilfe eines Hochleistungs-Ytterbium-Faserlasers 78 Millionen Attosekunden-Pulszüge pro Sekunde (78MHz) zu erzeugen. Jeder Pulszug besteht aus etwa 20 einzelnen Attosekunden-Lichtblitzen. Die Laserpulse, aus denen die Attosekunden-Lichtblitze erzeugt wurden, wurden zuerst in einem optischen Resonator - eine Anordnung von Spiegeln, mittels derer Licht möglichst oft hin und her reflektiert wird - kohärent überlagert. Jedes Mal, wenn ein Wellenzug einen bestimmten Spiegel traf, wurde dieser synchron verstärkt, indem man einen weiteren Puls von außen mit seinen Wellen exakt überlagerte. Damit haben die Forscher, die Intensität der rund 50 Femtosekunden langen Laserpulse um das 250fache erhöht und zugleich deren Stabilität verbessert (eine Femtosekunde ist ein Millionstel einer milliardstel Sekunde).

Im Experiment ließen die Forscher die Laserpulse auf ein Plasma aus Argon-Edelgasatomen treffen. Die Elektronen der Argonatome nahmen die Lichtenergie auf und gaben sie anschließend in Form von Attosekunden-Lichtblitzen wieder ab. Durch eine raffinierte Methode wurden die Pulse aus dem Resonator ausgekoppelt: Die Forscher filterten sie durch ein winziges Loch in einem Spiegel heraus, das gerade so groß war, dass die Ausbreitung der Attosekunden-Lichtblitze kaum gestört wurde.

Auf diese Weise erzeugten die Forscher ebenso so viele Attosekunden-Pulszüge pro Sekunde, wie Laserpulse aus dem Ytterbium-Faserlaser emittiert werden, also 78 Millionen pro Sekunde. Diese Attosekunden-Lichtblitze befinden sich im extremen, ultravioletten Spektrum des Lichts (Wellenlänge zwischen 10 und 100 Nanometer). Zudem bewegen sich die Lichtteilchen in den Blitzen kohärent - also in einem einheitlichen Takt - und verfügen über eine bisher bei solchen Repetitionsraten noch nicht erreichte Energie (100eV).

All diese Faktoren haben das Potential, die Erforschung des Mikrokosmos mit Hilfe von Lichtteilchen (Photonen) zu revolutionieren: Durch die extrem schnelle Datenaufnahme unter stabilen Bedingungen wird es erstmals möglich, den Weg von Elektronen, ähnlich wie bei Stroboskopaufnahmen, zu verfolgen.

Den eingeschlagenen Weg wollen die Wissenschaftler weiterführen, hin zu noch höheren Leistungen der Laserpulse, deren Dauer zudem verkürzt werden soll. Damit sollen dann isolierte Attosekundenblitze statt der Pulszüge erzeugt werden. Desweiteren soll die Energie der Photonen in den aus den Laserpulsen produzierten Attosekunden-Lichtblitzen gesteigert werden bis ins sogenannte Wasserfenster (auf 280 eV). Dies würde erstmals die Mikroskopie von biologischen Proben mit hoher Zeitauflösung, also in Filmen, ermöglichen.

(Nature Photonics, 7. Juli, 2013) Thorsten Naeser

Originalpublikation:
I. Pupeza, S. Holzberger, T. Eidam, H. Carstens, D. Esser, J. Weitenberg, P. Rußbüldt, J. Rauschenberger, J. Limpert, Th. Udem, A. Tünnermann, T.W. Hänsch, A. Apolonski, F. Krausz und E. Fill
Compact high-repetition-rate source of coherent 100 eVradiation
Nature Photonics, 7.Juli 2013, DOI:10.1038/nphoton.2013.156
Infos unter http://www.attoworld.de
Kontakt:
Dr. Ioachim Pupeza
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Str. 1, 85748 Garching
Tel.: +49 (0)89 289 14637
E-Mail: joachim.pupeza@mpq.mpg.de
Dr. Ernst Fill
Ludwig-Maximilians-Universität München,
Am Coulombwall 1, 85748 Garching
Tel.: +49 (0)89 289 14110
E-Mail: ernst.fill@mpq.mpg.de
Simon Holzberger
Ludwig-Maximilians-Universität München,
Am Coulombwall 1, 85748 Garching
Tel.: +49 (0)89 289 14095
E-Mail: simon.holzberger@physik.uni-muenchen.de

Luise Dirscherl | idw
Weitere Informationen:
http://www.attoworld.de
http://www.uni-muenchen.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion
23.06.2017 | Max-Planck-Institut für Astrophysik

nachricht Individualisierte Faserkomponenten für den Weltmarkt
22.06.2017 | Laser Zentrum Hannover e.V. (LZH)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften