Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Elektronenfotografie - Filme statt nur Schnappschüsse

11.07.2013
Physiker der Ludwig-Maximilians-Universität und des Max-Planck-Instituts für Quantenoptik entwickeln einen Laseraufbau, der es ermöglicht, Elektronenbewegungen zu filmen.

Elektronen sind flink; so flink, dass es schwer ist, sie zu fotografieren. Das Problem hat man zwar mittlerweile im Griff, doch erhält man bis heute nur einzelne Schnappschüsse von den Elementarteilchen.

Wie und wohin sich Elektronen über einen zusammenhängenden Zeitraum orientieren, ist bis heute nicht zu beobachten. Jetzt hat ein Team vom Labor für Attosekundenphysik (LAP) an der Ludwig-Maximilians-Universität (LMU) München und dem Max-Planck-Institut für Quantenoptik (MPQ) in Garching in Zusammenarbeit mit Forschern der Friedrich-Schiller-Universität Jena eine Laserkonfiguration entwickelt, mit deren Hilfe es möglich wird, die Bewegungen von Elektronen wie in einem Film zu verfolgen.

Dazu haben die Forscher mit einem Hochleistungslaser intensive und stabile Attosekunden-Pulszüge erzeugt, die sich pro Sekunde 78 Millionen Mal wiederholten. Jeder Pulszug besteht dabei aus rund 20 einzelnen Attosekunden-Lichtblitzen. Mit dieser hohen Frequenz lassen sich Elektronen, deren quantenmechanische Zustände sich sehr schnell ändern, effizienter als bisher aufzeichnen. Damit steht die Beobachtung dieser Elementarteilchen vor einer neuen Ära.

Eine besondere Spielart der Fotografie sind Stroboskopaufnahmen von bewegten Objekten. Dabei löst der Fotograf mehrmals einen Blitz aus, während er ein Bild nur einmal belichtet. Der Effekt ist spektakulär: Das Objekt wird in einem einzigen Bild mehrmals abgebildet, während es sich von einem Ort zum anderen bewegt.

In der Ultrakurzzeitphysik schaut man etwas neidisch auf solche konventionellen Stroboskopaufnahmen. Denn hier ist es bislang nur möglich, ultraschnelle Teilchen - etwa Elektronen - in Einzelbildern festzuhalten. Die Einzelbilder werden mithilfe von Lichtblitzen erzeugt, die über Laserpulse produziert werden. Man erhält dabei keinen Ablauf einer kompletten Bewegung, denn die quantenmechanischen Bewegungen von Elektronen sind attosekundenschnell – eine Attosekunde ist ein Milliardstel einer milliardstel Sekunde - und damit zu flink, um scharfe Schnappschüsse zu erhalten. Auch Elektronenkonfigurationen ändern sich innerhalb von Attosekunden.

Mit einer neuen Technik, die ein Team von Laserphysikern um Professor Ferencz Krausz und Dr. Ioachim Pupeza entwickelt hat, könnte es jetzt möglich werden, die Bewegungen von Quantenteilchen detaillierter und zeitaufgelöst aufzuzeichnen, ähnlich wie bei konventionellen Stroboskopaufnahmen.

Die Physiker haben es geschafft, mit Hilfe eines Hochleistungs-Ytterbium-Faserlasers 78 Millionen Attosekunden-Pulszüge pro Sekunde (78MHz) zu erzeugen. Jeder Pulszug besteht aus etwa 20 einzelnen Attosekunden-Lichtblitzen. Die Laserpulse, aus denen die Attosekunden-Lichtblitze erzeugt wurden, wurden zuerst in einem optischen Resonator - eine Anordnung von Spiegeln, mittels derer Licht möglichst oft hin und her reflektiert wird - kohärent überlagert. Jedes Mal, wenn ein Wellenzug einen bestimmten Spiegel traf, wurde dieser synchron verstärkt, indem man einen weiteren Puls von außen mit seinen Wellen exakt überlagerte. Damit haben die Forscher, die Intensität der rund 50 Femtosekunden langen Laserpulse um das 250fache erhöht und zugleich deren Stabilität verbessert (eine Femtosekunde ist ein Millionstel einer milliardstel Sekunde).

Im Experiment ließen die Forscher die Laserpulse auf ein Plasma aus Argon-Edelgasatomen treffen. Die Elektronen der Argonatome nahmen die Lichtenergie auf und gaben sie anschließend in Form von Attosekunden-Lichtblitzen wieder ab. Durch eine raffinierte Methode wurden die Pulse aus dem Resonator ausgekoppelt: Die Forscher filterten sie durch ein winziges Loch in einem Spiegel heraus, das gerade so groß war, dass die Ausbreitung der Attosekunden-Lichtblitze kaum gestört wurde.

Auf diese Weise erzeugten die Forscher ebenso so viele Attosekunden-Pulszüge pro Sekunde, wie Laserpulse aus dem Ytterbium-Faserlaser emittiert werden, also 78 Millionen pro Sekunde. Diese Attosekunden-Lichtblitze befinden sich im extremen, ultravioletten Spektrum des Lichts (Wellenlänge zwischen 10 und 100 Nanometer). Zudem bewegen sich die Lichtteilchen in den Blitzen kohärent - also in einem einheitlichen Takt - und verfügen über eine bisher bei solchen Repetitionsraten noch nicht erreichte Energie (100eV).

All diese Faktoren haben das Potential, die Erforschung des Mikrokosmos mit Hilfe von Lichtteilchen (Photonen) zu revolutionieren: Durch die extrem schnelle Datenaufnahme unter stabilen Bedingungen wird es erstmals möglich, den Weg von Elektronen, ähnlich wie bei Stroboskopaufnahmen, zu verfolgen.

Den eingeschlagenen Weg wollen die Wissenschaftler weiterführen, hin zu noch höheren Leistungen der Laserpulse, deren Dauer zudem verkürzt werden soll. Damit sollen dann isolierte Attosekundenblitze statt der Pulszüge erzeugt werden. Desweiteren soll die Energie der Photonen in den aus den Laserpulsen produzierten Attosekunden-Lichtblitzen gesteigert werden bis ins sogenannte Wasserfenster (auf 280 eV). Dies würde erstmals die Mikroskopie von biologischen Proben mit hoher Zeitauflösung, also in Filmen, ermöglichen.

(Nature Photonics, 7. Juli, 2013) Thorsten Naeser

Originalpublikation:
I. Pupeza, S. Holzberger, T. Eidam, H. Carstens, D. Esser, J. Weitenberg, P. Rußbüldt, J. Rauschenberger, J. Limpert, Th. Udem, A. Tünnermann, T.W. Hänsch, A. Apolonski, F. Krausz und E. Fill
Compact high-repetition-rate source of coherent 100 eVradiation
Nature Photonics, 7.Juli 2013, DOI:10.1038/nphoton.2013.156
Infos unter http://www.attoworld.de
Kontakt:
Dr. Ioachim Pupeza
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Str. 1, 85748 Garching
Tel.: +49 (0)89 289 14637
E-Mail: joachim.pupeza@mpq.mpg.de
Dr. Ernst Fill
Ludwig-Maximilians-Universität München,
Am Coulombwall 1, 85748 Garching
Tel.: +49 (0)89 289 14110
E-Mail: ernst.fill@mpq.mpg.de
Simon Holzberger
Ludwig-Maximilians-Universität München,
Am Coulombwall 1, 85748 Garching
Tel.: +49 (0)89 289 14095
E-Mail: simon.holzberger@physik.uni-muenchen.de

Luise Dirscherl | idw
Weitere Informationen:
http://www.attoworld.de
http://www.uni-muenchen.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Heiß & kalt – Gegensätze ziehen sich an
25.04.2017 | Universität Wien

nachricht Astronomen-Team findet Himmelskörper mit „Schmauchspuren“
25.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Chemnitz präsentiert weltweit einzigartige Pilotanlage für nachhaltigen Leichtbau

Wickelprinzip umgekehrt: Orbitalwickeltechnologie soll neue Maßstäbe in der großserientauglichen Fertigung komplexer Strukturbauteile setzen

Mitarbeiterinnen und Mitarbeiter des Bundesexzellenzclusters „Technologiefusion für multifunktionale Leichtbaustrukturen" (MERGE) und des Instituts für...

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Tag der Immunologie - 29. April 2017

28.04.2017 | Veranstaltungen

Kampf gegen multiresistente Tuberkulose – InfectoGnostics trifft MYCO-NET²-Partner in Peru

28.04.2017 | Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Über zwei Millionen für bessere Bordnetze

28.04.2017 | Förderungen Preise

Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers

28.04.2017 | Biowissenschaften Chemie

Wie Pflanzen ihre Zucker leitenden Gewebe bilden

28.04.2017 | Biowissenschaften Chemie