Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Elektronenfotografie - Filme statt nur Schnappschüsse

11.07.2013
Physiker der Ludwig-Maximilians-Universität und des Max-Planck-Instituts für Quantenoptik entwickeln einen Laseraufbau, der es ermöglicht, Elektronenbewegungen zu filmen.

Elektronen sind flink; so flink, dass es schwer ist, sie zu fotografieren. Das Problem hat man zwar mittlerweile im Griff, doch erhält man bis heute nur einzelne Schnappschüsse von den Elementarteilchen.

Wie und wohin sich Elektronen über einen zusammenhängenden Zeitraum orientieren, ist bis heute nicht zu beobachten. Jetzt hat ein Team vom Labor für Attosekundenphysik (LAP) an der Ludwig-Maximilians-Universität (LMU) München und dem Max-Planck-Institut für Quantenoptik (MPQ) in Garching in Zusammenarbeit mit Forschern der Friedrich-Schiller-Universität Jena eine Laserkonfiguration entwickelt, mit deren Hilfe es möglich wird, die Bewegungen von Elektronen wie in einem Film zu verfolgen.

Dazu haben die Forscher mit einem Hochleistungslaser intensive und stabile Attosekunden-Pulszüge erzeugt, die sich pro Sekunde 78 Millionen Mal wiederholten. Jeder Pulszug besteht dabei aus rund 20 einzelnen Attosekunden-Lichtblitzen. Mit dieser hohen Frequenz lassen sich Elektronen, deren quantenmechanische Zustände sich sehr schnell ändern, effizienter als bisher aufzeichnen. Damit steht die Beobachtung dieser Elementarteilchen vor einer neuen Ära.

Eine besondere Spielart der Fotografie sind Stroboskopaufnahmen von bewegten Objekten. Dabei löst der Fotograf mehrmals einen Blitz aus, während er ein Bild nur einmal belichtet. Der Effekt ist spektakulär: Das Objekt wird in einem einzigen Bild mehrmals abgebildet, während es sich von einem Ort zum anderen bewegt.

In der Ultrakurzzeitphysik schaut man etwas neidisch auf solche konventionellen Stroboskopaufnahmen. Denn hier ist es bislang nur möglich, ultraschnelle Teilchen - etwa Elektronen - in Einzelbildern festzuhalten. Die Einzelbilder werden mithilfe von Lichtblitzen erzeugt, die über Laserpulse produziert werden. Man erhält dabei keinen Ablauf einer kompletten Bewegung, denn die quantenmechanischen Bewegungen von Elektronen sind attosekundenschnell – eine Attosekunde ist ein Milliardstel einer milliardstel Sekunde - und damit zu flink, um scharfe Schnappschüsse zu erhalten. Auch Elektronenkonfigurationen ändern sich innerhalb von Attosekunden.

Mit einer neuen Technik, die ein Team von Laserphysikern um Professor Ferencz Krausz und Dr. Ioachim Pupeza entwickelt hat, könnte es jetzt möglich werden, die Bewegungen von Quantenteilchen detaillierter und zeitaufgelöst aufzuzeichnen, ähnlich wie bei konventionellen Stroboskopaufnahmen.

Die Physiker haben es geschafft, mit Hilfe eines Hochleistungs-Ytterbium-Faserlasers 78 Millionen Attosekunden-Pulszüge pro Sekunde (78MHz) zu erzeugen. Jeder Pulszug besteht aus etwa 20 einzelnen Attosekunden-Lichtblitzen. Die Laserpulse, aus denen die Attosekunden-Lichtblitze erzeugt wurden, wurden zuerst in einem optischen Resonator - eine Anordnung von Spiegeln, mittels derer Licht möglichst oft hin und her reflektiert wird - kohärent überlagert. Jedes Mal, wenn ein Wellenzug einen bestimmten Spiegel traf, wurde dieser synchron verstärkt, indem man einen weiteren Puls von außen mit seinen Wellen exakt überlagerte. Damit haben die Forscher, die Intensität der rund 50 Femtosekunden langen Laserpulse um das 250fache erhöht und zugleich deren Stabilität verbessert (eine Femtosekunde ist ein Millionstel einer milliardstel Sekunde).

Im Experiment ließen die Forscher die Laserpulse auf ein Plasma aus Argon-Edelgasatomen treffen. Die Elektronen der Argonatome nahmen die Lichtenergie auf und gaben sie anschließend in Form von Attosekunden-Lichtblitzen wieder ab. Durch eine raffinierte Methode wurden die Pulse aus dem Resonator ausgekoppelt: Die Forscher filterten sie durch ein winziges Loch in einem Spiegel heraus, das gerade so groß war, dass die Ausbreitung der Attosekunden-Lichtblitze kaum gestört wurde.

Auf diese Weise erzeugten die Forscher ebenso so viele Attosekunden-Pulszüge pro Sekunde, wie Laserpulse aus dem Ytterbium-Faserlaser emittiert werden, also 78 Millionen pro Sekunde. Diese Attosekunden-Lichtblitze befinden sich im extremen, ultravioletten Spektrum des Lichts (Wellenlänge zwischen 10 und 100 Nanometer). Zudem bewegen sich die Lichtteilchen in den Blitzen kohärent - also in einem einheitlichen Takt - und verfügen über eine bisher bei solchen Repetitionsraten noch nicht erreichte Energie (100eV).

All diese Faktoren haben das Potential, die Erforschung des Mikrokosmos mit Hilfe von Lichtteilchen (Photonen) zu revolutionieren: Durch die extrem schnelle Datenaufnahme unter stabilen Bedingungen wird es erstmals möglich, den Weg von Elektronen, ähnlich wie bei Stroboskopaufnahmen, zu verfolgen.

Den eingeschlagenen Weg wollen die Wissenschaftler weiterführen, hin zu noch höheren Leistungen der Laserpulse, deren Dauer zudem verkürzt werden soll. Damit sollen dann isolierte Attosekundenblitze statt der Pulszüge erzeugt werden. Desweiteren soll die Energie der Photonen in den aus den Laserpulsen produzierten Attosekunden-Lichtblitzen gesteigert werden bis ins sogenannte Wasserfenster (auf 280 eV). Dies würde erstmals die Mikroskopie von biologischen Proben mit hoher Zeitauflösung, also in Filmen, ermöglichen.

(Nature Photonics, 7. Juli, 2013) Thorsten Naeser

Originalpublikation:
I. Pupeza, S. Holzberger, T. Eidam, H. Carstens, D. Esser, J. Weitenberg, P. Rußbüldt, J. Rauschenberger, J. Limpert, Th. Udem, A. Tünnermann, T.W. Hänsch, A. Apolonski, F. Krausz und E. Fill
Compact high-repetition-rate source of coherent 100 eVradiation
Nature Photonics, 7.Juli 2013, DOI:10.1038/nphoton.2013.156
Infos unter http://www.attoworld.de
Kontakt:
Dr. Ioachim Pupeza
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Str. 1, 85748 Garching
Tel.: +49 (0)89 289 14637
E-Mail: joachim.pupeza@mpq.mpg.de
Dr. Ernst Fill
Ludwig-Maximilians-Universität München,
Am Coulombwall 1, 85748 Garching
Tel.: +49 (0)89 289 14110
E-Mail: ernst.fill@mpq.mpg.de
Simon Holzberger
Ludwig-Maximilians-Universität München,
Am Coulombwall 1, 85748 Garching
Tel.: +49 (0)89 289 14095
E-Mail: simon.holzberger@physik.uni-muenchen.de

Luise Dirscherl | idw
Weitere Informationen:
http://www.attoworld.de
http://www.uni-muenchen.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Speicherdauer von Qubits für Quantencomputer weiter verbessert
09.12.2016 | Forschungszentrum Jülich

nachricht Elektronenautobahn im Kristall
09.12.2016 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie