Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Elektronen-Wettrennen: Die kürzeste Sprintstrecke der Welt

15.01.2015

Mit Laserpulsen lässt sich die Bewegung von Elektronen in Metall nun mit Attosekunden-Präzision untersuchen. Damit kann man elektronische Effekte verstehen – und vielleicht auch verbessern.

Elektrischen Strom zu messen ist einfach. Die einzelnen Elektronen zu beobachten, aus denen dieser Strom besteht, ist allerdings äußerst schwierig. Mit einer Geschwindigkeit von mehreren Millionen Metern pro Sekunde rasen die Elektronen durch das Material, und die Distanzen, die sie zwischen zwei benachbarten Atomen zurückzulegen haben, sind äußerst kurz.


Ein Laserstrahl dringt in eine Struktur ein, die aus zwei verschiedenen Metallen besteht. In beiden Metallen können Elektronen aus ihrem Platz gelöst werden und sich nach außen (oben) bewegen.

Dementsprechend muss man winzige Zeitintervalle auflösen können, um den Sprint der Elektronen durchs Material zu studieren. Durch Messungen in Garching (Deutschland) und theoretische Berechnungen der TU Wien ist das nun gelungen. Wie sich zeigt, unterscheidet sich die Bewegung der Elektronen in einem Metall gar nicht besonders stark von der ballistischen Bewegung im freien Raum. Veröffentlicht wurden die Ergebnisse nun im Journal „Nature“.

Die winzigen Zeitskalen der Quantenwelt

Der sogenannte „photoelektrische Effekt“ wurde bereits 1905 von Albert Einstein erklärt: Licht überträgt Energie auf ein Elektron, das dabei aus dem Material herausgelöst wird. Das geschieht so schnell, dass es lange Zeit völlig unmöglich erschien, den zeitlichen Ablauf dieses Effektes zu untersuchen. In den letzten Jahren hat sich allerdings das Forschungsgebiet der Attosekundenphysik deutlich weiterentwickelt, sodass man heute solche quantenphysikalischen Prozesse tatsächlich zeitaufgelöst analysieren kann.

Eine Attosekunde ist ein Milliardstel einer Milliardstelsekunde (10^-18 Sekunden). So lange braucht das Licht ungefähr, um in einem Metall den Weg von einem Atom zum nächsten zurückzulegen. Mit Hilfe ultrakurzer Laserpulse kann man heute Messgenauigkeiten in Attosekunden-Größenordnung erreichen.

Die nun veröffentlichten Daten wurden am Max-Planck-Institut für Quantenoptik in Garching gemessen. Am Experiment beteiligt waren auch die TU München, das Fritz-Haber-Institut in Berlin, das Max-Planck-Institut für die Struktur und Dynamik der Materie in Hamburg und die LMU München. An der TU Wien wurden dazu die theoretische Modelle und Computersimulationen entwickelt, um die experimentellen Ergebnisse präzise interpretieren zu können.

Wettlauf der Elektronen

„Im Experiment untersucht man ein Wettrennen der Elektronen“, erklärt Prof. Joachim Burgdörfer vom Institut für Theoretische Physik der TU Wien. Zwei verschiedene Metalle – Wolfram und Magnesium – werden aufeinandergestapelt und mit einem Laserpuls beschossen. Das Laserlicht kann nun entweder außen im Magnesium oder darunter im Wolfram Elektronen herauslösen, die dann nach kurzer Zeit den Weg an die Oberfläche finden. Nicht mal einen Nanometer legen die Elektronen dabei normalerweise zurück, und trotzdem kann man messen, mit welchem Vorsprung die Elektronen aus dem Magnesium vor den Elektronen aus der Wolfram-Schicht an der Oberfläche ankommen.

Die Länge der Elektronen-Sprintstrecke kann variiert werden: Zwischen einer und fünf Atomlagen Magnesium wurde auf das Wolfram aufgedampft. „Je dicker die Magnesium-Schicht ist, umso größer ist der mittlere zeitliche Vorsprung der Elektronen, die dort herausgelöst werden, gegenüber den Elektronen aus der Wolfram-Schicht“, sagt Christoph Lemell (TU Wien). Der einfache Zusammenhang zwischen Schichtdicke und Ankunftszeit zeigt, dass sich die Elektronen recht ungestört und geradlinig („ballistisch“) durch das Metall bewegen und es nicht zu komplexeren Stoßprozessen kommt.

Scharf gezogene Ziellinie

Entscheidend für die Zeitmessung beim Elektronen-Sprint ist eine wohldefinierte Ziellinie. Dafür wurde im Experiment ein weiterer Laserpuls auf die Metall-Oberfläche geschossen – und zwar so, dass er die aus dem Metall austretenden Elektronen beeinflusst, aber nicht ins Innere des Metalls eindringt. „Innerhalb eines Bereichs der kürzer ist als der Abstand zwischen zwei Metall-Atomen ändert sich die Intensität dieses Laserfeldes ganz extrem“, erklärt Georg Wachter (TU Wien). Schon in der äußersten atomaren Schicht des Metalls wird das Feld praktisch auf null reduziert, unmittelbar oberhalb der Metalloberfläche hingegen geraten die austretenden Elektronen sofort in ein starkes Laserfeld. Erst durch die Schärfe dieses Übergangs wird die präzise Messung möglich.

Die neuen Erkenntnisse sollen bei der weiteren Miniaturisierung von elektronischen und photonischen Bauteilen helfen – und sie sind ein weiterer Beweis für die erstaunlichen Möglichkeiten der Attosekundenphysik, durch deren Techniken atomare Phänomene immer besser studiert werden können. „Dieser Forschungsbereich könnte ganz neue Türen öffnen, neue Methoden für die Quantentechnologie liefern und uns helfen, grundlegende Fragen der Materialwissenschaft und Elektronik zu verstehen“, sagt Joachim Burgdörfer.

Rückfragehinweise:
Prof. Christoph Lemell
Institut für Theoretische Physik
Technische Universität Wien
T: +43-1-58801-13612
christoph.lemell@tuwien.ac.at

Dr. Georg Wachter
Institut für Theoretische Physik
Technische Universität Wien
T: +43-1-58801-13630
georg.wachter@tuwien.ac.at

Prof. Joachim Burgdörfer
Institut für Theoretische Physik
Technische Universität Wien
joachim.burgdoerfer@tuwien.ac.at

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://www.tuwien.ac.at

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Die Sonne: Motor des Erdklimas
23.08.2017 | Generalverwaltung der Max-Planck-Gesellschaft, München

nachricht Entfesselte Magnetkraft
23.08.2017 | Generalverwaltung der Max-Planck-Gesellschaft, München

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Platz 2 für Helikopter-Designstudie aus Stade - Carbontechnologie-Studenten der PFH erfolgreich

Bereits lange vor dem Studienabschluss haben vier Studenten des PFH Hansecampus Stade ihr ingenieurwissenschaftliches Können eindrucksvoll unter Beweis gestellt: Malte Blask, Hagen Hagens, Nick Neubert und Rouven Weg haben bei einem internationalen Wettbewerb der American Helicopter Society (AHS International) den zweiten Platz belegt. Ihre Aufgabe war es, eine Designstudie für ein helikopterähnliches Fluggerät zu entwickeln, das 24 Stunden an einem Punkt in der Luft fliegen kann.

Die vier Kommilitonen sind im Studiengang Verbundwerkstoffe/Composites am Hansecampus Stade der PFH Private Hochschule Göttingen eingeschrieben. Seit elf...

Im Focus: Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall

In einem Artikel der aktuellen Ausgabe des Forschungsmagazins „Nature“ berichten Wissenschaftler vom Max-Planck-Institut für Chemische Physik fester Stoffe in Dresden von der Entdeckung eines seltenen Materiezustandes, bei dem sich die Elektronen in einem Kristall gemeinsam in einer Richtung bewegen. Diese Entdeckung berührt eine der offenen Fragestellungen im Bereich der Festkörperphysik: Was passiert, wenn sich Elektronen gemeinsam im Kollektiv verhalten, in sogenannten „stark korrelierten Elektronensystemen“, und wie „einigen sich“ die Elektronen auf ein gemeinsames Verhalten?

In den meisten Metallen beeinflussen sich Elektronen gegenseitig nur wenig und leiten Wärme und elektrischen Strom weitgehend unabhängig voneinander durch das...

Im Focus: Wie ein Bakterium von Methanol leben kann

Bei einem Bakterium, das Methanol als Nährstoff nutzen kann, identifizierten ETH-Forscher alle dafür benötigten Gene. Die Erkenntnis hilft, diesen Rohstoff für die Biotechnologie besser nutzbar zu machen.

Viele Chemiker erforschen derzeit, wie man aus den kleinen Kohlenstoffverbindungen Methan und Methanol grössere Moleküle herstellt. Denn Methan kommt auf der...

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Zukunft des Leichtbaus: Mehr als nur Material einsparen

23.08.2017 | Veranstaltungen

Logistikmanagement-Konferenz 2017

23.08.2017 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Oktober 2017

23.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Spot auf die Maschinerie des Lebens

23.08.2017 | Biowissenschaften Chemie

Die Sonne: Motor des Erdklimas

23.08.2017 | Physik Astronomie

Entfesselte Magnetkraft

23.08.2017 | Physik Astronomie