Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wenn Elektronen wellenreiten

17.03.2011
Spinpolarisierte Elektronen lassen sich mit Hilfe von akustischen Wellen transportieren. Mit einem raffinierten Versuchsaufbau können PDI-Physiker erfolgen, wie sich dabei der Spin der Elektronen verändert.

Wenn Elektronen durch einen Halbleiter wandern, transportieren sie ihre Ladung. Für noch leistungsfähigere elektronische Bauelemente wollen Physiker einen weiteren Zustand der Elektronen manipulieren und transportieren – deren Spin.


Am Zeitpunkt des Laserpulses ist die Spinpolarisation der Elektronen am größten (dunkelroter Peak). Mit akustischer Welle (rechte Abbildung) zeigen die Elektronen auch nach 5 Nanosekunden und einer durchschnittlichen Entfernung von 20 Mikrometern vom Startpunkt noch Spinpolarisation (gelb). Abb.: PDI

Der Spin ist eine Art quantenmechanischer Drehimpuls um die eigene Achse, der nur zwei Zustände kennt – „up“ und „down“. Sind die Drehachsen aller Elektronen in einem Ensemble parallel und drehen sich alle in die gleiche Richtung, dann ist das Ensemble spinpolarisiert. Würden sich alle Elektronenspins umgekehrt drehen, hätte das Ensemble den entgegengesetzten Spin. Gibt es keine Vorzugsrichtung ist die durchschnittliche Spinpolarisation gleich Null. Ziel dieser Spintronik genannten Forschungsrichtung ist es, spinpolarisierte Elektronen zu erzeugen, zu manipulieren und zu transportieren.

Insbesondere der Transport von spinpolarisierten Elektronen birgt viele Schwierigkeiten. Da ist zunächst das Eigenmagnetfeld, das immer entsteht, wenn Ladungsträger wie Elektronen sich bewegen. Es lenkt den Spin der einzelnen Elektronen im Laufe des Weges aus seiner ursprünglichen Vorzugsrichtung, bis irgendwann überhaupt keine durchschnittliche Spinpolarisation mehr vorliegt. Ein weiteres Problem ist die Wechselwirkung der Elektronen mit Löchern und mit Störstellen, wodurch der Spin ebenfalls verschwindet. Physiker des Paul-Drude-Instituts für Festkörperelektronik schicken nun spinpolarisierte Elektronen auf Wanderschaft durch eine spezielle Halbleiterstruktur, einen sogenannten Galliumarsenid-Quantenfilm und messen, wie sich die Spinpolarisation im Laufe der Zeit verändert. Sie verwenden dafür eine raffinierte Methode, die das Erzeugen und Messen der Elektronen in einem Versuchsaufbau ermöglicht – die sogenannte magnetooptische Kerr-Rotations-Methode.

Zunächst trifft dabei ein ultrakurzer Anrege-Laserpuls auf den Quantenfilm und erzeugt Elektronen und Löcher. Das Licht des Lasers ist zirkular polarisiert; das heißt, dass die Lichtwellen nicht nur auf und ab, sondern auch kreisförmig um die Achse ihrer Ausbreitungsrichtung schwingen. Solches Licht erzeugt im Quantenfilm spin- polarisierte Elektronen. Diese werden von einer akustischen Welle transportiert, wobei Elektronen und Löcher räumlich weit voneinander getrennt sind – die einen sammeln sich im Wellental, die anderen im Wellenberg. „Das verhindert, dass sie schnell wieder rekombinieren, wodurch der Spin verloren gehen würde“, erläutert Dr. Alberto Hernández-Mínguez vom PDI. Die Forscher können so die Lebenszeit der Spinpolarisation erheblich verlängern. Zur Detektion dieses Phänomens wird ein zweiter, linear polarisierter Abtast-Laserpuls verwendet, der mit zeitlicher Verzögerung bezüglich des Anrege-Laserpulses auf die von der akustischen Welle transportierten Elektronen trifft. Da die Lichtpolarisation durch spinpolarisierte Elektronen gedreht wird, können die Physiker ermitteln, wie groß die Spinpolarisation des Elektronen-Ensembles nach unterschiedlichen Entfernungen vom Ausgangspunkt ist. „Wir können so den zeitlichen Verlauf des Abklingens der Spinpolarisation genau verfolgen“, so Hernández-Mínguez.

Die Forscher haben senkrecht zur Ausbreitungsrichtung der akustischen Wellen ein Magnetfeld angelegt und eine weitere interessante Eigenschaft des Spins verfolgen können: Ein äußeres Magnetfeld führt dazu, dass der Spin sich um das Magnetfeld dreht. Sie konnten im zeitlichen Verlauf beobachten, dass die Elektronen auf ihrem Weg von ca. 20 Mikrometern zweimal ihre Polarisationsrichtung ändern und am Ende noch etwa 10 Prozent Spinpolarisation aufweisen.

Appl. Phys. Lett. 97, 242110 (2010)

Kontakt:
Dr. Paulo Ventura Santos, Tel.: 030-20377 221, paulo.santos@pdi-berlin.de
Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5-7, 10117 Berlin

Christine Vollgraf | Forschungsverbund Berlin e.V.
Weitere Informationen:
http://www.pdi-berlin.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau
17.11.2017 | Universität Ulm

nachricht Zwei verdächtigte Sterne unschuldig an mysteriösem Antiteilchen-Überschuss
17.11.2017 | Max-Planck-Institut für Kernphysik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Im Focus: «Kosmische Schlange» lässt die Struktur von fernen Galaxien erkennen

Die Entstehung von Sternen in fernen Galaxien ist noch weitgehend unerforscht. Astronomen der Universität Genf konnten nun erstmals ein sechs Milliarden Lichtjahre entferntes Sternensystem genauer beobachten – und damit frühere Simulationen der Universität Zürich stützen. Ein spezieller Effekt ermöglicht mehrfach reflektierte Bilder, die sich wie eine Schlange durch den Kosmos ziehen.

Heute wissen Astronomen ziemlich genau, wie sich Sterne in der jüngsten kosmischen Vergangenheit gebildet haben. Aber gelten diese Gesetzmässigkeiten auch für...

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Pflanzenvielfalt von Wäldern aus der Luft abbilden

Produktivität und Stabilität von Waldökosystemen hängen stark von der funktionalen Vielfalt der Pflanzengemeinschaften ab. UZH-Forschenden gelang es, die Pflanzenvielfalt von Wäldern durch Fernerkundung mit Flugzeugen in verschiedenen Massstäben zu messen und zu kartieren – von einzelnen Bäumen bis hin zu ganzen Artengemeinschaften. Die neue Methode ebnet den Weg, um zukünftig die globale Pflanzendiversität aus der Luft und aus dem All zu überwachen.

Ökologische Studien zeigen, dass die Pflanzenvielfalt zentral ist für das Funktionieren von Ökosys-temen. Wälder mit einer höheren funktionalen Vielfalt –...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungen

Roboter für ein gesundes Altern: „European Robotics Week 2017“ an der Frankfurt UAS

17.11.2017 | Veranstaltungen

Börse für Zukunftstechnologien – Leichtbautag Stade bringt Unternehmen branchenübergreifend zusammen

17.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungsnachrichten

IHP präsentiert sich auf der productronica 2017

17.11.2017 | Messenachrichten

Roboter schafft den Salto rückwärts

17.11.2017 | Innovative Produkte