Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wenn Elektronen wellenreiten

17.03.2011
Spinpolarisierte Elektronen lassen sich mit Hilfe von akustischen Wellen transportieren. Mit einem raffinierten Versuchsaufbau können PDI-Physiker erfolgen, wie sich dabei der Spin der Elektronen verändert.

Wenn Elektronen durch einen Halbleiter wandern, transportieren sie ihre Ladung. Für noch leistungsfähigere elektronische Bauelemente wollen Physiker einen weiteren Zustand der Elektronen manipulieren und transportieren – deren Spin.


Am Zeitpunkt des Laserpulses ist die Spinpolarisation der Elektronen am größten (dunkelroter Peak). Mit akustischer Welle (rechte Abbildung) zeigen die Elektronen auch nach 5 Nanosekunden und einer durchschnittlichen Entfernung von 20 Mikrometern vom Startpunkt noch Spinpolarisation (gelb). Abb.: PDI

Der Spin ist eine Art quantenmechanischer Drehimpuls um die eigene Achse, der nur zwei Zustände kennt – „up“ und „down“. Sind die Drehachsen aller Elektronen in einem Ensemble parallel und drehen sich alle in die gleiche Richtung, dann ist das Ensemble spinpolarisiert. Würden sich alle Elektronenspins umgekehrt drehen, hätte das Ensemble den entgegengesetzten Spin. Gibt es keine Vorzugsrichtung ist die durchschnittliche Spinpolarisation gleich Null. Ziel dieser Spintronik genannten Forschungsrichtung ist es, spinpolarisierte Elektronen zu erzeugen, zu manipulieren und zu transportieren.

Insbesondere der Transport von spinpolarisierten Elektronen birgt viele Schwierigkeiten. Da ist zunächst das Eigenmagnetfeld, das immer entsteht, wenn Ladungsträger wie Elektronen sich bewegen. Es lenkt den Spin der einzelnen Elektronen im Laufe des Weges aus seiner ursprünglichen Vorzugsrichtung, bis irgendwann überhaupt keine durchschnittliche Spinpolarisation mehr vorliegt. Ein weiteres Problem ist die Wechselwirkung der Elektronen mit Löchern und mit Störstellen, wodurch der Spin ebenfalls verschwindet. Physiker des Paul-Drude-Instituts für Festkörperelektronik schicken nun spinpolarisierte Elektronen auf Wanderschaft durch eine spezielle Halbleiterstruktur, einen sogenannten Galliumarsenid-Quantenfilm und messen, wie sich die Spinpolarisation im Laufe der Zeit verändert. Sie verwenden dafür eine raffinierte Methode, die das Erzeugen und Messen der Elektronen in einem Versuchsaufbau ermöglicht – die sogenannte magnetooptische Kerr-Rotations-Methode.

Zunächst trifft dabei ein ultrakurzer Anrege-Laserpuls auf den Quantenfilm und erzeugt Elektronen und Löcher. Das Licht des Lasers ist zirkular polarisiert; das heißt, dass die Lichtwellen nicht nur auf und ab, sondern auch kreisförmig um die Achse ihrer Ausbreitungsrichtung schwingen. Solches Licht erzeugt im Quantenfilm spin- polarisierte Elektronen. Diese werden von einer akustischen Welle transportiert, wobei Elektronen und Löcher räumlich weit voneinander getrennt sind – die einen sammeln sich im Wellental, die anderen im Wellenberg. „Das verhindert, dass sie schnell wieder rekombinieren, wodurch der Spin verloren gehen würde“, erläutert Dr. Alberto Hernández-Mínguez vom PDI. Die Forscher können so die Lebenszeit der Spinpolarisation erheblich verlängern. Zur Detektion dieses Phänomens wird ein zweiter, linear polarisierter Abtast-Laserpuls verwendet, der mit zeitlicher Verzögerung bezüglich des Anrege-Laserpulses auf die von der akustischen Welle transportierten Elektronen trifft. Da die Lichtpolarisation durch spinpolarisierte Elektronen gedreht wird, können die Physiker ermitteln, wie groß die Spinpolarisation des Elektronen-Ensembles nach unterschiedlichen Entfernungen vom Ausgangspunkt ist. „Wir können so den zeitlichen Verlauf des Abklingens der Spinpolarisation genau verfolgen“, so Hernández-Mínguez.

Die Forscher haben senkrecht zur Ausbreitungsrichtung der akustischen Wellen ein Magnetfeld angelegt und eine weitere interessante Eigenschaft des Spins verfolgen können: Ein äußeres Magnetfeld führt dazu, dass der Spin sich um das Magnetfeld dreht. Sie konnten im zeitlichen Verlauf beobachten, dass die Elektronen auf ihrem Weg von ca. 20 Mikrometern zweimal ihre Polarisationsrichtung ändern und am Ende noch etwa 10 Prozent Spinpolarisation aufweisen.

Appl. Phys. Lett. 97, 242110 (2010)

Kontakt:
Dr. Paulo Ventura Santos, Tel.: 030-20377 221, paulo.santos@pdi-berlin.de
Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5-7, 10117 Berlin

Christine Vollgraf | Forschungsverbund Berlin e.V.
Weitere Informationen:
http://www.pdi-berlin.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Waschen für die Mikrowelt – Potsdamer Physiker entwickeln lichtempfindliche Seife
02.12.2016 | Universität Potsdam

nachricht Quantenreibung: Jenseits der Näherung des lokalen Gleichgewichts
01.12.2016 | Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie