Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wenn Elektronen wellenreiten

17.03.2011
Spinpolarisierte Elektronen lassen sich mit Hilfe von akustischen Wellen transportieren. Mit einem raffinierten Versuchsaufbau können PDI-Physiker erfolgen, wie sich dabei der Spin der Elektronen verändert.

Wenn Elektronen durch einen Halbleiter wandern, transportieren sie ihre Ladung. Für noch leistungsfähigere elektronische Bauelemente wollen Physiker einen weiteren Zustand der Elektronen manipulieren und transportieren – deren Spin.


Am Zeitpunkt des Laserpulses ist die Spinpolarisation der Elektronen am größten (dunkelroter Peak). Mit akustischer Welle (rechte Abbildung) zeigen die Elektronen auch nach 5 Nanosekunden und einer durchschnittlichen Entfernung von 20 Mikrometern vom Startpunkt noch Spinpolarisation (gelb). Abb.: PDI

Der Spin ist eine Art quantenmechanischer Drehimpuls um die eigene Achse, der nur zwei Zustände kennt – „up“ und „down“. Sind die Drehachsen aller Elektronen in einem Ensemble parallel und drehen sich alle in die gleiche Richtung, dann ist das Ensemble spinpolarisiert. Würden sich alle Elektronenspins umgekehrt drehen, hätte das Ensemble den entgegengesetzten Spin. Gibt es keine Vorzugsrichtung ist die durchschnittliche Spinpolarisation gleich Null. Ziel dieser Spintronik genannten Forschungsrichtung ist es, spinpolarisierte Elektronen zu erzeugen, zu manipulieren und zu transportieren.

Insbesondere der Transport von spinpolarisierten Elektronen birgt viele Schwierigkeiten. Da ist zunächst das Eigenmagnetfeld, das immer entsteht, wenn Ladungsträger wie Elektronen sich bewegen. Es lenkt den Spin der einzelnen Elektronen im Laufe des Weges aus seiner ursprünglichen Vorzugsrichtung, bis irgendwann überhaupt keine durchschnittliche Spinpolarisation mehr vorliegt. Ein weiteres Problem ist die Wechselwirkung der Elektronen mit Löchern und mit Störstellen, wodurch der Spin ebenfalls verschwindet. Physiker des Paul-Drude-Instituts für Festkörperelektronik schicken nun spinpolarisierte Elektronen auf Wanderschaft durch eine spezielle Halbleiterstruktur, einen sogenannten Galliumarsenid-Quantenfilm und messen, wie sich die Spinpolarisation im Laufe der Zeit verändert. Sie verwenden dafür eine raffinierte Methode, die das Erzeugen und Messen der Elektronen in einem Versuchsaufbau ermöglicht – die sogenannte magnetooptische Kerr-Rotations-Methode.

Zunächst trifft dabei ein ultrakurzer Anrege-Laserpuls auf den Quantenfilm und erzeugt Elektronen und Löcher. Das Licht des Lasers ist zirkular polarisiert; das heißt, dass die Lichtwellen nicht nur auf und ab, sondern auch kreisförmig um die Achse ihrer Ausbreitungsrichtung schwingen. Solches Licht erzeugt im Quantenfilm spin- polarisierte Elektronen. Diese werden von einer akustischen Welle transportiert, wobei Elektronen und Löcher räumlich weit voneinander getrennt sind – die einen sammeln sich im Wellental, die anderen im Wellenberg. „Das verhindert, dass sie schnell wieder rekombinieren, wodurch der Spin verloren gehen würde“, erläutert Dr. Alberto Hernández-Mínguez vom PDI. Die Forscher können so die Lebenszeit der Spinpolarisation erheblich verlängern. Zur Detektion dieses Phänomens wird ein zweiter, linear polarisierter Abtast-Laserpuls verwendet, der mit zeitlicher Verzögerung bezüglich des Anrege-Laserpulses auf die von der akustischen Welle transportierten Elektronen trifft. Da die Lichtpolarisation durch spinpolarisierte Elektronen gedreht wird, können die Physiker ermitteln, wie groß die Spinpolarisation des Elektronen-Ensembles nach unterschiedlichen Entfernungen vom Ausgangspunkt ist. „Wir können so den zeitlichen Verlauf des Abklingens der Spinpolarisation genau verfolgen“, so Hernández-Mínguez.

Die Forscher haben senkrecht zur Ausbreitungsrichtung der akustischen Wellen ein Magnetfeld angelegt und eine weitere interessante Eigenschaft des Spins verfolgen können: Ein äußeres Magnetfeld führt dazu, dass der Spin sich um das Magnetfeld dreht. Sie konnten im zeitlichen Verlauf beobachten, dass die Elektronen auf ihrem Weg von ca. 20 Mikrometern zweimal ihre Polarisationsrichtung ändern und am Ende noch etwa 10 Prozent Spinpolarisation aufweisen.

Appl. Phys. Lett. 97, 242110 (2010)

Kontakt:
Dr. Paulo Ventura Santos, Tel.: 030-20377 221, paulo.santos@pdi-berlin.de
Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5-7, 10117 Berlin

Christine Vollgraf | Forschungsverbund Berlin e.V.
Weitere Informationen:
http://www.pdi-berlin.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Blick ins Universum
15.01.2018 | Georg-August-Universität Göttingen

nachricht Extrem helle und schnelle Lichtemission
11.01.2018 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erstmalige präzise Messung der effektiven Ladung eines einzelnen Moleküls

Zum ersten Mal ist es Forschenden gelungen, die effektive elektrische Ladung eines einzelnen Moleküls in Lösung präzise zu messen. Dieser fundamentale Fortschritt einer vom SNF unterstützten Professorin könnte den Weg für die Entwicklung neuartiger medizinischer Diagnosegeräte ebnen.

Die elektrische Ladung ist eine der Kerneigenschaften, mit denen Moleküle miteinander in Wechselwirkung treten. Das Leben selber wäre ohne diese Eigenschaft...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Wie Metallstrukturen effektiv helfen, Knochen zu heilen

Forscher schaffen neue Generation von Knochenimplantaten

Wissenschaftler am Julius Wolff Institut, dem Berlin-Brandenburger Centrum für Regenerative Therapien und dem Centrum für Muskuloskeletale Chirurgie der...

Im Focus: Extrem helle und schnelle Lichtemission

Eine in den vergangenen Jahren intensiv untersuchte Art von Quantenpunkten kann Licht in allen Farben wiedergeben und ist sehr hell. Ein internationales Forscherteam mit Beteiligung von Wissenschaftlern der ETH Zürich hat nun herausgefunden, warum dem so ist. Die Quantenpunkte könnten dereinst in Leuchtdioden zum Einsatz kommen.

Ein internationales Team von Wissenschaftlern der ETH Zürich, von IBM Research Zurich, der Empa und von vier amerikanischen Forschungseinrichtungen hat die...

Im Focus: Paradigmenwechsel in Paris: Den Blick für den gesamten Laserprozess öffnen

Die neusten Trends und Innovationen bei der Laserbearbeitung von Composites hat das Fraunhofer-Institut für Lasertechnik ILT im März 2018 auf der JEC World Composite Show im Fokus: In Paris demonstrieren die Forscher auf dem Gemeinschaftsstand des Aachener Zentrums für integrativen Leichtbau AZL unter anderem, wie sich Verbundwerkstoffe mit dem Laser fügen, strukturieren, schneiden und bohren lassen.

Keine andere Branche hat in der Öffentlichkeit für so viel Aufmerksamkeit für Verbundwerkstoffe gesorgt wie die Automobilindustrie, die neben der Luft- und...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Tagung „Elektronikkühlung - Wärmemanagement“ vom 06. - 07.03.2018 in Essen

11.01.2018 | Veranstaltungen

Registrierung offen für Open Science Conference 2018 in Berlin

11.01.2018 | Veranstaltungen

Wie sieht die Bioökonomie der Zukunft aus?

10.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mit mikroskopischen Luftblasen dämmen

15.01.2018 | Architektur Bauwesen

Feldarbeiten der größten Bodeninventur Deutschlands sind abgeschlossen

15.01.2018 | Agrar- Forstwissenschaften

Perowskit-Solarzellen: Es muss gar nicht perfekt sein

15.01.2018 | Materialwissenschaften