Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Elektronen im Verzug

25.06.2010
Anders als bislang angenommen werden Elektronen bei der Fotoemission verzögert aus einem Atom katapultiert

Wenn Physiker neue Halbleiter für Chips oder Laser suchen, können sie sich auf ausgeklügelte Computerprogramme verlassen - bis jetzt. Doch möglicherweise vereinfachen die Modelle, mit denen diese Programme die elektronischen Eigenschaften eines Materials vorhersagen, die Wirklichkeit zu sehr. Das hat ein internationales Team um Forscher des Max-Planck-Instituts für Quantenoptik nun in Messungen mit extrem kurzen Laserpulsen festgestellt. Daraus schließen die Physiker, dass Elektronen, die ein Laserpuls aus einem Atom herausschlägt, mit einer Verzögerung von einigen zig Attosekunden aus dem Teilchen katapultiert werden. Eine Attosekunde entspricht dem Milliardstel Teil einer Milliardstel Sekunde. Bislang galt, dass Elektronen bei der Fotoemission sofort davon schießen, sobald der Lichtpuls auf das Material trifft. Von einem solchen Verhalten der Elektronen gehen auch die Modelle aus, mit denen Quantenphysiker die elektronischen Eigenschaften der Materie beschreiben. Zumindest wenn es um sehr genaue Vorhersagen geht, könnten diese Modelle daher zu unpräzise sein. (Science, 25. Juni 2010)


Stoppuhr für eine elektronische Startverzögerung: Der innere blau dargestellte Attosekunden-Laserpuls schlägt bei der Fotoemission Elektronen aus Neon-Atomen heraus, mit dem roten Strahl wird die relative Startzeit von zwei unterschiedlichen Elektronen gemessen. Bild: Thorsten Naeser / MPI für Quantenoptik

Über Dinge, die sie nicht nachprüfen können, zerbrechen sich Physiker selten den Kopf. Das galt seit der Entdeckung der Fotoemission vor gut 100 Jahren auch für die Frage, wie schnell ein Lichtstrahl ein Elektron aus einem Atom herausschleudert. Denn es war klar, dass der Prozess allemal viel kürzer dauern würde, als selbst die genaueste Methode messen konnte. Daher nahmen die Physiker kurzerhand an, die Fotoemission erfolge instantan. Einen Verzug zwischen dem Eintreffen des Lichts und dem Entweichen des Elektrons gebe es nicht. "Damit hat man die Wirklichkeit zu sehr vereinfacht", sagt Martin Schultze, einer der Forscher des Max-Planck-Instituts für Quantenoptik in Garching, die die Lehrmeinung gemeinsam mit Kollegen der Ludwig-Maximilians-Universität München, der Technischen Universität München sowie Partnern aus Griechenland, Österreich und Saudi Arabien widerlegt haben: "Wir haben festgestellt, dass es eine Verzögerung bei der Fotoemission gibt." Ganz so, wie selbst der beste Sprinter nicht exakt mit dem Schuss aus dem Startblock saust.

Wie Elektronen im Atom wechselwirken

Bevor ein Elektron aus dem Atom davon fliegt, vergehen demnach einige zehn Attosekunden. Das sind zwar nur einige Milliardstel Bruchteile einer Milliardstel Sekunde. Doch auch dieser winzige Moment reicht, um an der Theorie zu rütteln, die Physiker über das elektronische Geschehen im Atom aufgestellt haben. "Unsere Ergebnisse geben einen weiteren wichtigen Einblick in die Wechselwirkungen von Elektronen in Atomen", sagt Ferenc Krausz, in dessen Abteilung am Max-Planck-Institut für Quantenoptik die Experimente vorgenommen wurden.

Wenn ein Elektron aus einem Atom herausgelöst wird, ist das keine Sache, die ein Elektron alleine mit dem Lichtpuls ausmacht. Solch ein Ereignis betrifft immer alle Elektronen eines Atoms. Ohne vereinfachende Annahmen können aber sogar die leistungsfähigsten Rechner die gemeinsame Bewegung nicht simulieren. Daher schätzen sie den Einfluss der Elektronen, die bei der Fotoemission nicht selbst aus dem Atom geschleudert werden, mit einem Mittelwert ab.

Nun haben Forscher des Teams zum ersten Mal ausprobiert, ob sie die bekannten Modelle so mit Ausgangswerten füttern können, dass die Simulationen einen verzögerten Elektronenstart wiedergeben. Und tatsächlich: Wenn die etablierten Modellen entsprechend getrimmt werden, berechnen auch sie die Verzögerung, veranschlagen sie aber bei einem Wert, der nur bei einem Fünftel des gemessenen Verzugs liegt. "Offenbar machen sie dabei aber einen systematischen Fehler", sagt Martin Schultze.

Nun können Theoretiker die Modelle so verfeinern, dass sie den verzögerten Elektronenschuss wiedergeben und auch präzisere Aussagen zu anderen Aspekten des elektronischen Verhaltens erhalten. "Das dürfte vor allem dann von Bedeutung geht, wenn es um die elektronischen Transporteigenschaften eines Materials geht", sagt Martin Schultze. Etwa bei der Suche nach Halbleitern oder Materialien mit speziellen Eigenschaften für die Elektronik.

Zeitmessung mit einem trickreichen Experiment

Dass die Physiker nun einen genaueren Blick auf die Fotoemission werfen können, verdanken sie der Attosekundenspektroskopie: "Seit relativ kurzer Zeit können wir Prozesse beobachten, die nur einige Milliardstel Bruchteile einer Milliardstel Sekunde dauern", sagt Ferenc Krausz. Aber auch die extrem kurzen Laserblitze machen noch keine Stoppuhr, mit der sich die absolute Startzeit eines Elektrons nach dem Eintreffen eines Laserpulses messen ließe. "Stattdessen geben unsere Experimente einen sehr zuverlässigen Anhaltspunkt, um auf die Verzögerung zu schließen und ihre Dauer abzuschätzen", erklärt Martin Schultze.

Er und seine Kollegen haben den Zeitunterschied gemessen, mit dem Elektronen aus verschiedenen Orbitalen starten. Ein Orbital beschreibt den Raum, in dem sich ein Elektron aufhält, und bestimmt auch die Reaktion eines Elektrons auf den Laserbeschuss. Und wie verschiedene Sprinter unterschiedlich gut starten, fliegen auch die Elektronen aus verschiedenen Orbitalen nicht mit demselben Verzug davon. Die Differenz zwischen ihren Startzeiten ermitteln die Physiker mit einem raffinierten Kniff.

Als Versuchsobjekt bedienen sie sich dabei einer Wolke des Edelgases Neon und nehmen Elektronen aus zwei Orbitalen in den Blick. Auf die Atome jagen sie nun den Puls von sehr energiereichem ultraviolettem Licht, der gerade einmal für einige zehn Attosekunden aufblitzt und verschiedene Elektronen aus den Edelgasteilchen herausschlägt. Darüber hinaus strahlen sie auf die Atome aber auch noch einen infraroten Laserpuls, der etwa 40-mal länger dauert als der ultraviolette Blitz. Beide Pulse synchronisieren sie so, dass der kürzere ultraviolette immer dann auf die Atome trifft, wenn sich dort auch die längere infrarote Laserwelle aufhält.

Startschuss für das Elektronenrennen

Sobald ein Elektron nun das Atom verlässt, spürt es das schwingende elektromagnetische Feld des infraroten Pulses. Je nachdem, ob das Elektron bei seinem Austritt aus dem Atom in ein Tal der infraroten Laserwelle fällt oder auf einen Berg trifft, wird es ein wenig beschleunigt oder abgebremst. In welche Richtung der Schubs geht, hängt zum einen davon ab, wie die Lichtwellen der beiden Pulse zusammenfallen, wenn sie auf das Atom treffen. Das können die Forscher sehr genau steuern. Es hängt zum anderen aber davon ab, wie stark sich der Start eines Elektrons verzögert, also auch von dem Orbital, aus dem es stammt. Indem die Forscher nun die Position des kurzen ultravioletten Pulses im längeren Infraroten variieren, erhalten sie ein Bild, wann verschiedene Elektronen beschleunigt beziehungsweise abgebremst werden. Daraus ergibt sich unmittelbar, wie sich die Startzeiten aus Elektronen unterschiedlicher Orbitale unterscheiden.

Im Fall der Elektronen, die das Physikerteam fokussierte, ergibt sich eine Differenz von etwa 20 Attosekunden. "Um jedoch ihren absoluten Wert zu messen, bräuchten wir ein Atom, in dem die Elektronen aus einem Orbital ohne Verzögerung starten", sagt Martin Schultze. Das unverzögerte Elektron gäbe dann den Startschuss für das Elektronenrennen und würde eine Stoppuhr für die verzögerten Startzeiten der anderen Elektronen ermöglichen.

Originalveröffentlichung:

M. Schultze, M. Fieß, N. Karpowicz, J. Gagnon, M. Korbman, M. Hofstetter, S. Neppl, A. L. Cavalieri, Y. Komninos, Th. Mercouris, C. A. Nicolaides, R. Pazourek, S. Nagele, J. Feist, J. Burgdörfer, A. M. Azzeer, R. Ernstorfer, R. Kienberger, U. Kleineberg, E. Goulielmakis, F. Krausz & V. S. Yakovlev
Delay in Photoemission
Science, 25. Juni 2010
Weitere Informationen erhalten Sie von:
Dr. Martin Schultze
Max-Planck-Institut für Quantenoptik, Garching
Tel.: +49 89 32905- 236
E-Mail: Martin.Schultze@mpq.mpg.de
Prof. Ferenc Krausz
Max-Planck-Institut für Quantenoptik, Garching
Tel.: +49 89 32905-612
E-Mail: krausz@lmu.de

Barbara Abrell | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Proteintransport - Stau in der Zelle
24.03.2017 | Ludwig-Maximilians-Universität München

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise