Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Elektronen-Umverteilung destabilisiert hochgeladenes Molekül

13.08.2014

Forscher des Heidelberger Max-Planck-Instituts für Kernphysik haben am Freie-Elektronen Laser (FEL) in Hamburg (FLASH) die kritischen Zeiten und Abstände bestimmt, bis zu denen sich Elektronen innerhalb eines zerbrechenden hochgeladenen Jodmoleküls noch umverteilen können.

Diese Frage ist von fundamentaler Wichtigkeit für eine der weitreichendsten zukünftigen FEL-Anwendungen: der Abbildung einzelner Biomoleküle. Die Daten ließen sich erfolgreich mit einem einfachen Modell der Stoßphysik interpretieren, wobei das Auseinanderbrechen des Moleküls als Halbstoß beschrieben wird [Physical Review Letters, 11. August 2014].


Elektronische Energieniveaus bei zwei verschieden Abständen der Atomrümpfe. Oben können sich die Elektronen noch frei bewegen, unten ist die Bewegung durch die Potentialbarriere blockiert (Mom

Grafik: MPIK


Illustration eines klassischen Teilchenstoßes im Vergleich zum Aufbruch eines Moleküls (Halbstoß).Dem Stoßparameter b entspricht der Abstand der Atomrümpfe beim Halbstoß.

Grafik: MPIK

Eines der ehrgeizigsten Anwendungsziele von Freie-Elektronen-Lasern (FEL) ist die Abbildung der Struktur einzelner Biomoleküle mit atomarer Auflösung. Ausgewertet wird hierbei das Interferenzmuster der am Molekül gestreuten Röntgenstrahlung. Die Idee ist, mit ultrakurzen, hochintensiven FEL-Pulsen schon in einem einzigen Lichtblitz genügend Röntgenquanten zu liefern, um ein einzelnes Molekül abzulichten, wobei dieses aber unwiderruflich zerstört wird.

Daher muss die Belichtungszeit so kurz gewählt werden, dass sich die Struktur des Moleküls während der Aufnahme noch nicht zu stark verformt, bevor es schließlich explodiert. Die relevante Zeitdauer liegt im Bereich von Femtosekunden (1 fs = 1 Milliardstel einer Millionstel Sekunde).

Kontrovers diskutiert wird dabei unter anderem die Rolle schwerer Atome innerhalb der Moleküle, welche Röntgenlicht um mehrere Größenordnungen stärker absorbieren als leichte Kohlenstoff- oder Wasserstoffatome. Die dabei an wenigen Stellen konzentriert aufgenommene Energie breitet sich über komplizierte Abregungs- und Umverteilungsvorgänge der beteiligten Elektronen im Molekül aus.

Entscheidend ist hier z. B. wie sich die positive Ladung in Form fehlender Elektronen verhält – je gleichmäßiger sie sich verteilt, umso mehr trägt die gegenseitige Abstoßung der Ladungszentren zur Verformung und schließlich zu Explosion des Moleküls bei. Anhand des Iod-Moleküls I2 als Prototyp mit zwei schweren Atomen haben nun Forscher des Heidelberger Max-Planck-Instituts für Kernphysik (MPIK) die Dynamik dieser Ladungs-Umverteilung mit Hilfe des Freie-Elektronen-Lasers FLASH in Hamburg untersucht.

Die Gruppe um Robert Moshammer nutzte die Tatsache aus, dass bereits ein einzelnes energiereiches Photon der extrem-ultravioletten Strahlung genügt, um ein Jodmolekül mehrfach zu ionisieren. Hier wird zunächst sehr effizient ein inneres Elektron herausgeschlagen und die bei Auffüllung dieses „Lochzustands“ frei werdende Energie reicht aus, um weitere Elektronen herauszulösen. Das so mit einem ersten FEL-Röntgenblitz erzeugte, mehrfach geladene Molekül fliegt durch die gegenseitige Abstoßung der positiven Teilladungen auseinander.

Zu einem bestimmten, aber variablen Zeitpunkt wird dann ein zeitlich verzögerter, identischer Lichtblitz auf das explodierende Molekül geschossen. Dieser entfernt weitere Elektronen an einer Seite des Moleküls. Geschieht dies bei kleinen Kernabständen, so kann das Ladungsungleichgewicht durch Elektronentransfer auf die stärker positiv geladene Seite wieder ausgeglichen werden. Sind die Ionen aber schon zu weit auseinander gelaufen, die Molekülbindung also aufgebrochen, wird der Elektronenaustausch blockiert.

„Der kritische Abstand, bis zu dem sich Elektronen zwischen den Ionen frei bewegen können, kann durch Nachweis der Molekülfragmente mit einem so genannten Reaktionsmikroskop unter systematischer Variation des Zeitabstands der Lichtpulse vermessen werden.“ erklärt Thomas Pfeifer, Direktor am MPIK.

Die Physiker fanden eine anschauliche Beschreibung dieses Prozesses mittels eines einfachen klassischen Modells, das sich in der Stoßphysik bewährt hat. Wie in Abb. 1 und der Animation gezeigt, bilden die Atomrümpfe ein gemeinsames Potential, in dem sich die Valenzelektronen, welche die chemische Bindung vermitteln, frei bewegen können, solange ihr Energieniveau (schwarze Linie) oberhalb der Potentialbarriere zwischen den Atomen liegt.

Die Höhe der Barriere ist abhängig vom Abstand der auseinanderlaufenden Ionen und ab einem kritischen Abstand ist Elektronentransfer über die Barriere nicht mehr möglich. Die aus dem Experiment bestimmten Abstände stimmen sehr gut mit den vom Modell vorhergesagten Werten überein. „Im ersten Moment hat uns dies überrascht, da es sich um ein Modell aus der Stoßphysik handelt, aber hier augenscheinlich gar keine Kollision vorliegt“, erläutert Kirsten Schnorr ihren Ansatz. „Bei einem klassischen atomaren Stoß nähert sich ein Projektil dem Target bis auf einen Stoßparameter genannten minimalen Abstand b an, bevor beide Teilchen wieder auseinander laufen.“

Das vorliegende Experiment an Jod lässt sich als „Halbstoß“ deuten, wobei der Stoßparameter gerade dem Kernabstand entspricht, den die beiden Ionen zum Zeitpunkt der Ankunft des zweiten Röntgenblitzes einnehmen (Abb. 2). Ab hier wird nur noch das Auseinanderlaufen der Ionen betrachtet. Ein Halbstoß hat gegenüber einem klassischen Stoß den entscheidenden Vorteil, dass der Stoßparameter durch den einstellbaren Zeitpunkt des Probepulses kontrolliert werden kann.

Die kinetischen Energien der auseinanderlaufenden molekularen Fragmente sind recht niedrig und entsprechen gerade dem typischen Energiebereich von chemischen und Plasma-Reaktionen. Elektronentransfer spielt eine entscheidende Rolle bei diesen Prozessen, ist aber bei niedrigen Teilchenenergien weitgehend unerforscht. Die vorgestellte Halbstoß-Methode eröffnet daher eine Möglichkeit, diese Reaktionen als Funktion des Abstandes näher zu untersuchen.

Die Messergebnisse zeigen, dass Elektronentransfer auch über relativ große Kernabstände von mehreren Atomdurchmessern schneller als die Expansion des Moleküls geschehen kann. Dementsprechend wird eine lokal erzeugte Ladung effizient verteilt und führt somit zu einer beschleunigten Explosion des Moleküls. Dies stellt eine wichtige Erkenntnis für die Analyse einzelner Biomoleküle dar, deren Struktur abgebildet werden muss, bevor der Röntgenpuls selbst sie verändert. Als nächsten Schritt plant Kirsten Schnorr, bekannte komplexere Moleküle mit einzelnen Absorptionszentren zu untersuchen und die Elektronen-Umverteilung darin zu verfolgen.

Originalpublikation:

Electron Rearrangement Dynamics in Dissociating I2n+ Molecules Accessed by Extreme Ultraviolet Pump-Probe Experiments
K. Schnorr, A. Senftleben, M. Kurka, A. Rudenko, G. Schmid, T. Pfeifer, K.Meyer, M. Kübel, M. F. Kling, Y. H. Jiang, R. Treusch, S. Düsterer, B. Siemer, M. Wöstmann, H. Zacharias, R. Mitzner, T. J. M. Zouros, J. Ullrich, C. D. Schröter and R. Moshammer
Physical Review Letters 113, 073001 (11. August 2014); DOI: 10.1103/PhysRevLett.113.073001

Kontakt:

Dr. Kirsten Schnorr
MPI für Kernphysik
E-Mail: kirsten.schnorr@mpi-hd.mpg.de
Tel.: +49 6221 526-429

Dr. Robert Moshammer
MPI für Kernphysik
E-Mail: robert.moshammer@mpi-hd.mpg.de
Tel.: +49 6221 526-461

Dr. Thomas Pfeifer
MPI für Kernphysik
E-Mail: thomas.pfeifer@mpi-hd.mpg.de
Tel.: +49 6221 526-380

Weitere Informationen:

http://dx.doi.org/10.1103/PhysRevLett.113.073001 Originalveröffentlichung
http://www.mpi-hd.mpg.de/ullrich/page.php?tag=laser Gruppe von Robert Moshammer am MPIK

Dr. Bernold Feuerstein | Max-Planck-Institut

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht MADMAX: Ein neues Experiment zur Erforschung der Dunklen Materie
20.10.2017 | Max-Planck-Institut für Physik

nachricht Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung
20.10.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung

Seit dreißig Jahren gibt eine bestimmte Uranverbindung der Forschung Rätsel auf. Obwohl die Kristallstruktur einfach ist, versteht niemand, was beim Abkühlen unter eine bestimmte Temperatur genau passiert. Offenbar entsteht eine so genannte „versteckte Ordnung“, deren Natur völlig unklar ist. Nun haben Physiker erstmals diese versteckte Ordnung näher charakterisiert und auf mikroskopischer Skala untersucht. Dazu nutzten sie den Hochfeldmagneten am HZB, der Neutronenexperimente unter extrem hohen magnetischen Feldern ermöglicht.

Kristalle aus den Elementen Uran, Ruthenium, Rhodium und Silizium haben eine geometrisch einfache Struktur und sollten keine Geheimnisse mehr bergen. Doch das...

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Im Focus: Neue Möglichkeiten für die Immuntherapie beim Lungenkrebs entdeckt

Eine gemeinsame Studie der Universität Bern und des Inselspitals Bern zeigt, dass spezielle Bindegewebszellen, die in normalen Blutgefässen die Wände abdichten, bei Lungenkrebs nicht mehr richtig funktionieren. Zusätzlich unterdrücken sie die immunologische Bekämpfung des Tumors. Die Resultate legen nahe, dass diese Zellen ein neues Ziel für die Immuntherapie gegen Lungenkarzinome sein könnten.

Lungenkarzinome sind die häufigste Krebsform weltweit. Jährlich werden 1.8 Millionen Neudiagnosen gestellt; und 2016 starben 1.6 Millionen Menschen an der...

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Das Immunsystem in Extremsituationen

19.10.2017 | Veranstaltungen

Die jungen forschungsstarken Unis Europas tagen in Ulm - YERUN Tagung in Ulm

19.10.2017 | Veranstaltungen

Bauphysiktagung der TU Kaiserslautern befasst sich mit energieeffizienten Gebäuden

19.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Forscher finden Hinweise auf verknotete Chromosomen im Erbgut

20.10.2017 | Biowissenschaften Chemie

Saugmaschinen machen Waschwässer von Binnenschiffen sauberer

20.10.2017 | Ökologie Umwelt- Naturschutz

Strukturbiologieforschung in Berlin: DFG bewilligt Mittel für neue Hochleistungsmikroskope

20.10.2017 | Förderungen Preise