Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Elektronen surfen auf der Lichtwelle

07.03.2012
In den aktuellen Experimenten von Göttinger Wissenschaftlern schlagen ultrakurze infrarote Laserpulse Elektronen aus Goldspitzen mit wenigen Nanometern Größe heraus.

Nach der Schulbuchbeschreibung des Photoeffekts – für die Albert Einstein den Nobelpreis erhielt – dürften dabei jedoch gar keine Elektronen emittiert werden, weil die Energie eines Infrarot-Photons dafür nicht ausreicht. Die Forscher der Universität Göttingen haben jetzt jedoch gezeigt, dass sich die Elektronen bei sehr starken Laserfeldern und in Nanostrukturen völlig neuartig verhalten. Die Ergebnisse der Studie sind in der Fachzeitschrift Nature erschienen.


Künstlerische Sicht vom Austreten und Beschleunigen von Elektronen in stark gebündelten, intensiven Laserpulsen an einer Nanospitze. Foto: Universität Göttingen


Künstlerische Sicht der Elektronenbeschleunigung in stark gebündelten, intensiven Laserpulsen. Foto: Universität Göttingen

Göttinger Wissenschaftler beschleunigen Elektronen mit Laserpulsen und Nanotechnologie

Aus einer mit Licht bestrahlten Metalloberfläche treten Elektronen aus – dieses Phänomen ist auch als photoelektrischer Effekt bekannt. In den aktuellen Experimenten von Göttinger Wissenschaftlern schlagen ultrakurze infrarote Laserpulse Elektronen aus Goldspitzen mit wenigen Nanometern Größe heraus, und zwar innerhalb weniger Millionstel einer Milliardstel Sekunde. Nach der Schulbuchbeschreibung des Photoeffekts – für die Albert Einstein den Nobelpreis erhielt – dürften dabei jedoch gar keine Elektronen emittiert werden, weil die Energie eines Infrarot-Photons dafür nicht ausreicht. Die Forscher der Universität Göttingen haben jetzt jedoch gezeigt, dass sich die Elektronen bei sehr starken Laserfeldern und in Nanostrukturen völlig neuartig verhalten. Die Ergebnisse der Studie sind in der Fachzeitschrift Nature erschienen.

Bei ihren Experimenten beobachten die Wissenschaftler vom Courant Forschungszentrum „Nanospektroskopie und Röntgenbildgebung“ der Universität Göttingen ein völlig anderes Verhalten als beim Photoelektrischen Effekt: „Normalerweise absorbiert ein Elektron genau ein Photon. Wir haben aber Elektronen gefunden, die – von der Lichtwelle getrieben – die Energie von über 1000 Photonen aufgenommen haben“, erklärt Georg Herink, wissenschaftlicher Mitarbeiter in der Göttinger Arbeitsgruppe. In den starken infraroten Lichtfeldern an der Spitze der Nanostruktur wächst die Energie der Elektronen mit der Lichtintensität und der Wellenlänge – zwei Abhängigkeiten, die in direktem Gegensatz zum üblichen Photoeffekt stehen. Die Energie der Elektronen wächst dabei auf eine Weise, die stark von der Form der Nanostruktur abhängt.

Wie der Leiter der Studie, Prof. Dr. Claus Ropers, erläutert, schlägt die neu beobachtete Elektronendynamik ein weiteres Kapitel in der hundertjährigen Physik des Photoeffekts auf. „Neben seiner Bedeutung für ein fundamentales Verständnis des Photoeffekts haben die Ergebnisse auch eine praktische Bedeutung: Sie zeigen uns neue Wege für die Realisierung ultraschneller Elektronenmikroskope auf, um mit kontrollierten Elektronenpulsen atomare Vorgänge zeitlich aufzulösen und die Schnappschüsse zu bewegten Bildern verbinden zu können“, sagt Prof. Ropers.

Originalveröffentlichung: Georg Herink et al. Field-driven photoemission from nanostructures quenches the quiver motion. Nature March 2012. Doi: 10.1038/nature10878.

Kontaktadresse:
Prof. Dr. Claus Ropers
Georg-August-Universität Göttingen – Fakultät für Physik
Institut für Materialphysik & Courant Forschungszentrum Nanospektroskopie und Röntgenbildgebung
Friedrich-Hund-Platz 1, 37077 Göttingen,
Telefon (0551) 39-4549, Fax (0551) 39-4560
E-Mail: cropers@gwdg.de

Beate Hentschel | Georg-August-Universität Götting
Weitere Informationen:
http://www.gwdg.de
http://www.uni-goettingen.de/de/91116.html

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Sterngeburt in den Winden supermassereicher Schwarzer Löcher
28.03.2017 | ESO Science Outreach Network - Haus der Astronomie

nachricht Das anwachsende Ende der Ordnung
27.03.2017 | Universität Konstanz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hannover Messe: Elektrische Maschinen in neuen Dimensionen

28.03.2017 | HANNOVER MESSE

Dimethylfumarat – eine neue Behandlungsoption für Lymphome

28.03.2017 | Medizin Gesundheit

Antibiotikaresistenz zeigt sich durch Leuchten

28.03.2017 | Biowissenschaften Chemie