Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wo Elektronen im Stau stehen

08.08.2011
Der dünnste Draht der Welt, hergestellt aus purem Gold, wird von Physikern der Universitäten Würzburg und Kassel untersucht. Für Aufsehen sorgt jetzt seine ungewöhnliche elektrische Leitfähigkeit: Die Elektronen bewegen sich nicht frei durch den Draht, sondern wie Autos im Stop-and-Go-Verkehr. Das berichten die Forscher aktuell in "Nature Physics"

Im Normalfall wandern Elektronen, die Träger der elektrischen Ladung, kreuz und quer durch Metalle oder andere elektrisch leitende Materialien. Aber das ändert sich, wenn man die Leiter immer kleiner macht.


In Nanodrähten aus Goldatomen können sich Elektronen nur in sehr engen Bahnen bewegen, so dass es zum Stau kommt. Veranschaulicht ist das hier durch den rot eingefärbten Draht. Rechts oben ist die Spitze eines Rastertunnelmikroskops dargestellt, mit dem Physiker die elektronischen Eigenschaften der Nanodrähte messen. Bild: Christian Blumenstein


Atomarer Baukasten: Aus einzelnen Goldatomen formen sich automatisch Nanodrähte (links), die sich dann gezielt mit Brücken verbinden oder absichtlich stören lassen – zum Beispiel durch den Einbau anderer Atomsorten oder das Entfernen einzelner Goldatome aus den Ketten. Bild: Christian Blumenstein

Die Würzburger Physiker am Lehrstuhl von Professor Ralph Claessen haben die Miniaturisierung auf die Spitze getrieben: Ihre Nanodrähte bestehen aus einzelnen Goldatomen, die kettenförmig angeordnet sind – kleiner geht es nicht. In Kooperation mit Professor René Matzdorf an der Universität Kassel und Luc Patthey am Paul-Scherrer-Institut nahe Zürich wurden jetzt die elektrischen Eigenschaften der Nanodrähte untersucht.

In den Nanodrähten sind die Elektronen so eingeengt, dass sie sich nur in eine Richtung bewegen können, nämlich entlang der Drähte. Und selbst dieses bisschen Freiheit können sie nicht voll ausnutzen. Sie kommen nur im Stop-and-Go-Verkehr voran – ähnlich wie im Stau auf der Autobahn, wenn den Fahrzeugen nur eine Spur zur Verfügung steht: Erst wenn ein Auto in der Schlange ein Stück fährt, kommen auch die anderen voran. „Genau so sind die Bewegungen der Elektronen in einem Nanodraht korreliert“, sagt Matzdorf. „Dabei können sie nur ausgewählte Energien annehmen, was sich in der elektrischen Leitfähigkeit widerspiegelt und von uns im Experiment genau vermessen wurde.“

Publikation in „Nature Physics“

Den Elektronenstau hat Claessens Team in Kooperation mit den Kollegen aus Kassel und dem Paul-Scherrer-Institut nun experimentell nachgewiesen. Den Wissenschaftlern gelang das mit hoch empfindlichen Messmethoden, der Rastertunnelmikroskopie und der Photoemission. Damit konnten sie die ungewöhnlichen Zustände der Elektronen direkt abprüfen. Ihre Ergebnisse sind in „Nature Physics“ publiziert.

Warum eine Top-Zeitschrift über dieses Forschungsergebnis berichtet? „Weil wir in den Atomketten bisher nicht gekannte Möglichkeiten haben, die Eigenschaften einer eindimensionalen Quantenflüssigkeit auszumessen“, sagt Claessen. Von einer Quantenflüssigkeit sprechen Physiker, wenn die Elektronen in solch engen Bahnen eingesperrt sind. Die Eigenschaften dieser „Flüssigkeit“ haben Theoretiker schon in den 1960er-Jahren vorhergesagt. In Experimenten tatsächlich auch beobachtet wurden bislang aber nur wenige davon.

Nanodrähte als Basis des Erfolgs

Es hat Jahrzehnte gedauert, diese besonderen Elektronenzustände experimentell in atomaren Nanostrukturen zu erzeugen. „Das liegt vor allem daran, dass die bisher hergestellten Nanodrähte zu nah beieinander lagen und sich gegenseitig beeinflusst haben, so dass keine Quantenflüssigkeit entstehen konnte“, erklärt Claessens Mitarbeiter Jörg Schäfer.

Dieses Problem haben die Würzburger Physiker vor gut zwei Jahren behoben: In einem ausgeklügelten Verfahren dampfen sie Goldatome so auf Germanium-Plättchen auf, dass die Atome sich von ganz alleine zu geradlinigen, parallel verlaufenden Ketten anordnen, die weit genug voneinander entfernt sind.

Nächste Schritte in der Forschung

Die Nanodrähte wollen die Physiker jetzt als atomaren Baukasten nutzen. Sie denken zum Beispiel daran, zwischen den Drähten Kontakte aus einzelnen Atomen oder Molekülen einzubauen, was winzigen atomaren Schaltelementen entsprechen würde. So wollen sie auf dieser kleinstmöglichen Ebene weiteren elektronischen Phänomenen nachspüren. Ihre Erkenntnisse dürften für die rasch fortschreitende Miniaturisierung von elektronischen Bauelementen, etwa für Computer, sehr wertvoll sein.

„Atomically controlled quantum chains hosting a Tomonaga-Luttinger liquid”, C. Blumenstein, J. Schäfer, S. Mietke, S. Meyer, A. Dollinger, M. Lochner, X. Y. Cui, L. Patthey, R. Matzdorf, R. Claessen, Nature Physics, Advanced Online Publication 7. August 2011, DOI: 10.1038/nphys2051

Kontakt

Prof. Dr. Ralph Claessen, Physikalisches Institut der Universität Würzburg, T (0931) 31-85732, claessen@physik.uni-wuerzburg.de

Privatdozent Dr. Jörg Schäfer, Physikalisches Institut der Universität Würzburg, T (0931) 31-83483, joerg.schaefer@physik.uni-wuerzburg.de

Prof. Dr. René Matzdorf, Institut für Physik der Universität Kassel, T (0561) 804-4772, matzdorf@physik.uni-kassel.de

Robert Emmerich | Uni Würzburg
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Lasing am Limit
15.02.2018 | Technische Universität Berlin

nachricht Forschung für die LED-Tapete der Zukunft
15.02.2018 | Universität Bremen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Eine Frage der Dynamik

Die meisten Ionenkanäle lassen nur eine ganz bestimmte Sorte von Ionen passieren, zum Beispiel Natrium- oder Kaliumionen. Daneben gibt es jedoch eine Reihe von Kanälen, die für beide Ionensorten durchlässig sind. Wie den Eiweißmolekülen das gelingt, hat jetzt ein Team um die Wissenschaftlerin Han Sun (FMP) und die Arbeitsgruppe von Adam Lange (FMP) herausgefunden. Solche nicht-selektiven Kanäle besäßen anders als die selektiven eine dynamische Struktur ihres Selektivitätsfilters, berichten die FMP-Forscher im Fachblatt Nature Communications. Dieser Filter könne zwei unterschiedliche Formen ausbilden, die jeweils nur eine der beiden Ionensorten passieren lassen.

Ionenkanäle sind für den Organismus von herausragender Bedeutung. Wenn zum Beispiel Sinnesreize wahrgenommen, ans Gehirn weitergeleitet und dort verarbeitet...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Erste integrierte Schaltkreise (IC) aus Plastik

Erstmals ist es einem Forscherteam am Max-Planck-Institut (MPI) für Polymerforschung in Mainz gelungen, einen integrierten Schaltkreis (IC) aus einer monomolekularen Schicht eines Halbleiterpolymers herzustellen. Dies erfolgte in einem sogenannten Bottom-Up-Ansatz durch einen selbstanordnenden Aufbau.

In diesem selbstanordnenden Aufbauprozess ordnen sich die Halbleiterpolymere als geordnete monomolekulare Schicht in einem Transistor an. Transistoren sind...

Im Focus: Quantenbits per Licht übertragen

Physiker aus Princeton, Konstanz und Maryland koppeln Quantenbits und Licht

Der Quantencomputer rückt näher: Neue Forschungsergebnisse zeigen das Potenzial von Licht als Medium, um Informationen zwischen sogenannten Quantenbits...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Aachener Optiktage: Expertenwissen in zwei Konferenzen für die Glas- und Kunststoffoptikfertigung

19.02.2018 | Veranstaltungen

Konferenz "Die Mobilität von morgen gestalten"

19.02.2018 | Veranstaltungen

Von Bitcoins bis zur Genomchirurgie

19.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Die Zukunft wird gedruckt

19.02.2018 | Architektur Bauwesen

Fraunhofer HHI präsentiert neueste VR- und 5G-Technologien auf dem Mobile World Congress

19.02.2018 | Messenachrichten

Stabile Gashydrate lösen Hangrutschung aus

19.02.2018 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics