Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wo Elektronen im Stau stehen

08.08.2011
Der dünnste Draht der Welt, hergestellt aus purem Gold, wird von Physikern der Universitäten Würzburg und Kassel untersucht. Für Aufsehen sorgt jetzt seine ungewöhnliche elektrische Leitfähigkeit: Die Elektronen bewegen sich nicht frei durch den Draht, sondern wie Autos im Stop-and-Go-Verkehr. Das berichten die Forscher aktuell in "Nature Physics"

Im Normalfall wandern Elektronen, die Träger der elektrischen Ladung, kreuz und quer durch Metalle oder andere elektrisch leitende Materialien. Aber das ändert sich, wenn man die Leiter immer kleiner macht.


In Nanodrähten aus Goldatomen können sich Elektronen nur in sehr engen Bahnen bewegen, so dass es zum Stau kommt. Veranschaulicht ist das hier durch den rot eingefärbten Draht. Rechts oben ist die Spitze eines Rastertunnelmikroskops dargestellt, mit dem Physiker die elektronischen Eigenschaften der Nanodrähte messen. Bild: Christian Blumenstein


Atomarer Baukasten: Aus einzelnen Goldatomen formen sich automatisch Nanodrähte (links), die sich dann gezielt mit Brücken verbinden oder absichtlich stören lassen – zum Beispiel durch den Einbau anderer Atomsorten oder das Entfernen einzelner Goldatome aus den Ketten. Bild: Christian Blumenstein

Die Würzburger Physiker am Lehrstuhl von Professor Ralph Claessen haben die Miniaturisierung auf die Spitze getrieben: Ihre Nanodrähte bestehen aus einzelnen Goldatomen, die kettenförmig angeordnet sind – kleiner geht es nicht. In Kooperation mit Professor René Matzdorf an der Universität Kassel und Luc Patthey am Paul-Scherrer-Institut nahe Zürich wurden jetzt die elektrischen Eigenschaften der Nanodrähte untersucht.

In den Nanodrähten sind die Elektronen so eingeengt, dass sie sich nur in eine Richtung bewegen können, nämlich entlang der Drähte. Und selbst dieses bisschen Freiheit können sie nicht voll ausnutzen. Sie kommen nur im Stop-and-Go-Verkehr voran – ähnlich wie im Stau auf der Autobahn, wenn den Fahrzeugen nur eine Spur zur Verfügung steht: Erst wenn ein Auto in der Schlange ein Stück fährt, kommen auch die anderen voran. „Genau so sind die Bewegungen der Elektronen in einem Nanodraht korreliert“, sagt Matzdorf. „Dabei können sie nur ausgewählte Energien annehmen, was sich in der elektrischen Leitfähigkeit widerspiegelt und von uns im Experiment genau vermessen wurde.“

Publikation in „Nature Physics“

Den Elektronenstau hat Claessens Team in Kooperation mit den Kollegen aus Kassel und dem Paul-Scherrer-Institut nun experimentell nachgewiesen. Den Wissenschaftlern gelang das mit hoch empfindlichen Messmethoden, der Rastertunnelmikroskopie und der Photoemission. Damit konnten sie die ungewöhnlichen Zustände der Elektronen direkt abprüfen. Ihre Ergebnisse sind in „Nature Physics“ publiziert.

Warum eine Top-Zeitschrift über dieses Forschungsergebnis berichtet? „Weil wir in den Atomketten bisher nicht gekannte Möglichkeiten haben, die Eigenschaften einer eindimensionalen Quantenflüssigkeit auszumessen“, sagt Claessen. Von einer Quantenflüssigkeit sprechen Physiker, wenn die Elektronen in solch engen Bahnen eingesperrt sind. Die Eigenschaften dieser „Flüssigkeit“ haben Theoretiker schon in den 1960er-Jahren vorhergesagt. In Experimenten tatsächlich auch beobachtet wurden bislang aber nur wenige davon.

Nanodrähte als Basis des Erfolgs

Es hat Jahrzehnte gedauert, diese besonderen Elektronenzustände experimentell in atomaren Nanostrukturen zu erzeugen. „Das liegt vor allem daran, dass die bisher hergestellten Nanodrähte zu nah beieinander lagen und sich gegenseitig beeinflusst haben, so dass keine Quantenflüssigkeit entstehen konnte“, erklärt Claessens Mitarbeiter Jörg Schäfer.

Dieses Problem haben die Würzburger Physiker vor gut zwei Jahren behoben: In einem ausgeklügelten Verfahren dampfen sie Goldatome so auf Germanium-Plättchen auf, dass die Atome sich von ganz alleine zu geradlinigen, parallel verlaufenden Ketten anordnen, die weit genug voneinander entfernt sind.

Nächste Schritte in der Forschung

Die Nanodrähte wollen die Physiker jetzt als atomaren Baukasten nutzen. Sie denken zum Beispiel daran, zwischen den Drähten Kontakte aus einzelnen Atomen oder Molekülen einzubauen, was winzigen atomaren Schaltelementen entsprechen würde. So wollen sie auf dieser kleinstmöglichen Ebene weiteren elektronischen Phänomenen nachspüren. Ihre Erkenntnisse dürften für die rasch fortschreitende Miniaturisierung von elektronischen Bauelementen, etwa für Computer, sehr wertvoll sein.

„Atomically controlled quantum chains hosting a Tomonaga-Luttinger liquid”, C. Blumenstein, J. Schäfer, S. Mietke, S. Meyer, A. Dollinger, M. Lochner, X. Y. Cui, L. Patthey, R. Matzdorf, R. Claessen, Nature Physics, Advanced Online Publication 7. August 2011, DOI: 10.1038/nphys2051

Kontakt

Prof. Dr. Ralph Claessen, Physikalisches Institut der Universität Würzburg, T (0931) 31-85732, claessen@physik.uni-wuerzburg.de

Privatdozent Dr. Jörg Schäfer, Physikalisches Institut der Universität Würzburg, T (0931) 31-83483, joerg.schaefer@physik.uni-wuerzburg.de

Prof. Dr. René Matzdorf, Institut für Physik der Universität Kassel, T (0561) 804-4772, matzdorf@physik.uni-kassel.de

Robert Emmerich | Uni Würzburg
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Das anwachsende Ende der Ordnung
27.03.2017 | Universität Konstanz

nachricht In einem Quantenrennen ist jeder Gewinner und Verlierer zugleich
27.03.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

Zweites Symposium 4SMARTS zeigt Potenziale aktiver, intelligenter und adaptiver Systeme

27.03.2017 | Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fließender Übergang zwischen Design und Simulation

27.03.2017 | HANNOVER MESSE

Industrial Data Space macht neue Geschäftsmodelle möglich

27.03.2017 | HANNOVER MESSE

Neue Sicherheitstechnik ermöglicht Teamarbeit

27.03.2017 | HANNOVER MESSE