Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Elektronen sichtbar gemacht: Physikern gelingt Einblick in molekulare Halbleiter

14.12.2011
Einem Team von Physikern ist der Nachweis gelungen, dass auch die Elektronen in großen Molekülen – beispielsweise in organischen Halbleitern – mit hoher Präzision durch einzelne Orbitale beschrieben werden können.

Die Arbeitsgruppe um Prof. Dr. Stephan Kümmel an der Universität Bayreuth konnte zeigen, dass es dabei sehr darauf ankommt, wie die Orbitale berechnet werden. Ihre theoretischen Vorhersagen wurden durch spektroskopische Messungen unter der Leitung von Dr. Achim Schöll und Prof. Dr. Friedrich Reinert an der Universität Würzburg und der Universität Hiroshima eindrucksvoll bestätigt. In den "Physical Review Letters" stellen die Wissenschaftler ihre Forschungsarbeiten vor.


Physikalische Forschungen zu NTCDA-Molekülen. NTCDA ist ein organischer Halbleiter, die Abkürzung steht für Naphthalenetetracarboxylic dianhydride. Links die Darstellung eines Orbitals, das auf theoretischen Berechnungen der Forschungsgruppe an der Universität Bayreuth beruht. Rot gekennzeichnet sind dabei die Bereiche, in den sich Elektronen mit besonders hoher Wahrscheinlichkeit aufhalten. Rechts daneben eine Darstellung des gleichen Orbitals auf der Basis empirischer Daten, die durch spektroskopische Untersuchungen an der Universität Würzburg gewonnen wurden. Die Berechnungen werden auf diese Weise klar bestätigt.
Grafik: Prof. Dr. Stephan Kümmel; zur Veröffentlichung frei.

Molekulare Halbleiter sind das Herzstück zahlreicher neuer Technologien, beispielsweise von organischen Solarzellen, die Lichtenergie in elektrischen Strom umwandeln. Die Weiterentwicklung dieser Technologien ist umso effektiver, je genauer die Strukturen organischer Halbleitermaterialien aufgeklärt werden. Ein Schlüssel für ein vertieftes Verständnis sind dabei die Eigenschaften der Elektronen. In jedem Molekül bilden die Elektronen eine Hülle, welche die Kerne der chemisch verbundenen Atome umschließt. Je geringer die Energiezustände von Elektronen sind, desto tiefer sind sie im Zentrum eines Moleküls angesiedelt; die Elektronen in höheren Energiezuständen befinden sich hingegen weiter außen im Randbereich eines Moleküls. Da besonders diese äußeren Elektronen die Eigenschaften der Moleküle bestimmen, ist es wichtig, dass gerade sie korrekt von einer Theorie beschrieben werden.

Aus prinzipiellen Gründen ist es nun aber unmöglich, die Aufenthaltsorte von Elektronen präzise zu ermitteln. Die physikalische Forschung kann lediglich Bereiche definieren, in denen sich mit hoher Wahrscheinlichkeit Elektronen befinden. Diese Bereiche, die als Orbitale bezeichnet werden, lassen sich einerseits theoretisch berechnen. Andererseits liefert die Photoelektronenspektroskopie (PES) empirische Daten, die es erlauben, die räumliche Gestalt solcher Bereiche zu rekonstruieren. Dadurch wird eine graphische Darstellung der Orbitale möglich.

Für kleine Moleküle stimmen die theoretisch berechneten und die experimentell bestimmten Orbitale häufig überein. Wenn es hingegen um technologisch interessante große Moleküle wie organische Halbleiter geht, gibt es eine solche Übereinstimmung in der Regel nicht. Die Bayreuther Arbeitsgruppe um Prof. Dr. Stephan Kümmel konnte jedoch – im Rahmen der Dichtefunktionaltheorie – ein Konzept entwickeln, das es erlaubt, die Orbitale von Elektronen mit hoher Genauigkeit zu berechnen. Sein Mitarbeiter Matthias Dauth hat dieses Verfahren auf Moleküle organischer Halbleiter angewendet. Anschließend hat er die Ergebnisse mit Berechnungen verglichen, zu denen die physikalische Forschung von anderen theoretischen Ansätzen aus gelangt. "Die Unterschiede waren signifikant", berichtet Dauth."Um nachzuweisen, dass das in Bayreuth entwickelte Berechnungsverfahren die präziseren Vorhersagen erlaubt, war daher der Vergleich mit experimentellen Ergebnissen, also möglichst leistungsstarken spektroskopischen Untersuchungen, ausgesprochen wichtig."

Deshalb haben die Bayreuther Physiker die Zusammenarbeit mit Forschergruppen an der Universität Würzburg und der Universität Hiroshima gesucht. In Würzburg arbeiten Dr. Achim Schöll und Prof. Dr. Friedrich Reinert, Lehrstuhl für Experimentelle Physik VII, schon seit längerer Zeit daran, die Photoelektronenspektroskopie (PES) auf komplexe Moleküle anzuwenden. Die Versuchsreihen, die sie mit ihren Mitarbeitern an organischen Halbleitern durchgeführt haben, bestätigen die Bayreuther Berechnungen. Die Orbitale, die für Elektronen in den Randbereichen dieser Moleküle theoretisch prognostiziert worden waren, stimmen auf eindrucksvolle Weise mit den Orbitalen überein, die auf der Basis empirischer Daten sichtbar gemacht werden konnten.

"Diese Übereinstimmung von Theorie und Experiment ermutigt uns, das theoretische Konzept weiterzuentwickeln, um die Elektroneneigenschaften noch genauer bestimmen zu können", erklärt Kümmel. "Wir gewinnen auf diese Weise direkten Einblick in die elektronischen Eigenschaften von Materialien, die sich für neue Halbleitertechnologien mit großem Gewinn nutzen lassen, nicht zuletzt bei der Entwicklung effizienter Verfahren der Stromerzeugung."

Veröffentlichung:

M. Dauth, T. Körzdörfer, and S. Kümmel; J. Ziroff, M. Wiessner, A. Schöll, and F. Reinert;
M. Arita and K. Shimada:
Orbital Density Reconstruction for Molecules,
in: Physical Review Letters 107, 193002 (2011)
DOI-Bookmark: 10.1103/PhysRevLett.107.193002
Ansprechpartner:
Prof. Dr. Stephan Kümmel
Theoretische Physik IV
Universität Bayreuth
D-95440 Bayreuth
Tel.: +49 (0)921 / 55-3220
E-Mail: stephan.kuemmel@uni-bayreuth.de

Christian Wißler | idw
Weitere Informationen:
http://www.uni-bayreuth.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Heiß & kalt – Gegensätze ziehen sich an
25.04.2017 | Universität Wien

nachricht Astronomen-Team findet Himmelskörper mit „Schmauchspuren“
25.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Chemnitz präsentiert weltweit einzigartige Pilotanlage für nachhaltigen Leichtbau

Wickelprinzip umgekehrt: Orbitalwickeltechnologie soll neue Maßstäbe in der großserientauglichen Fertigung komplexer Strukturbauteile setzen

Mitarbeiterinnen und Mitarbeiter des Bundesexzellenzclusters „Technologiefusion für multifunktionale Leichtbaustrukturen" (MERGE) und des Instituts für...

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Tag der Immunologie - 29. April 2017

28.04.2017 | Veranstaltungen

Kampf gegen multiresistente Tuberkulose – InfectoGnostics trifft MYCO-NET²-Partner in Peru

28.04.2017 | Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Über zwei Millionen für bessere Bordnetze

28.04.2017 | Förderungen Preise

Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers

28.04.2017 | Biowissenschaften Chemie

Wie Pflanzen ihre Zucker leitenden Gewebe bilden

28.04.2017 | Biowissenschaften Chemie