Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Elektronen sichtbar gemacht: Physikern gelingt Einblick in molekulare Halbleiter

14.12.2011
Einem Team von Physikern ist der Nachweis gelungen, dass auch die Elektronen in großen Molekülen – beispielsweise in organischen Halbleitern – mit hoher Präzision durch einzelne Orbitale beschrieben werden können.

Die Arbeitsgruppe um Prof. Dr. Stephan Kümmel an der Universität Bayreuth konnte zeigen, dass es dabei sehr darauf ankommt, wie die Orbitale berechnet werden. Ihre theoretischen Vorhersagen wurden durch spektroskopische Messungen unter der Leitung von Dr. Achim Schöll und Prof. Dr. Friedrich Reinert an der Universität Würzburg und der Universität Hiroshima eindrucksvoll bestätigt. In den "Physical Review Letters" stellen die Wissenschaftler ihre Forschungsarbeiten vor.


Physikalische Forschungen zu NTCDA-Molekülen. NTCDA ist ein organischer Halbleiter, die Abkürzung steht für Naphthalenetetracarboxylic dianhydride. Links die Darstellung eines Orbitals, das auf theoretischen Berechnungen der Forschungsgruppe an der Universität Bayreuth beruht. Rot gekennzeichnet sind dabei die Bereiche, in den sich Elektronen mit besonders hoher Wahrscheinlichkeit aufhalten. Rechts daneben eine Darstellung des gleichen Orbitals auf der Basis empirischer Daten, die durch spektroskopische Untersuchungen an der Universität Würzburg gewonnen wurden. Die Berechnungen werden auf diese Weise klar bestätigt.
Grafik: Prof. Dr. Stephan Kümmel; zur Veröffentlichung frei.

Molekulare Halbleiter sind das Herzstück zahlreicher neuer Technologien, beispielsweise von organischen Solarzellen, die Lichtenergie in elektrischen Strom umwandeln. Die Weiterentwicklung dieser Technologien ist umso effektiver, je genauer die Strukturen organischer Halbleitermaterialien aufgeklärt werden. Ein Schlüssel für ein vertieftes Verständnis sind dabei die Eigenschaften der Elektronen. In jedem Molekül bilden die Elektronen eine Hülle, welche die Kerne der chemisch verbundenen Atome umschließt. Je geringer die Energiezustände von Elektronen sind, desto tiefer sind sie im Zentrum eines Moleküls angesiedelt; die Elektronen in höheren Energiezuständen befinden sich hingegen weiter außen im Randbereich eines Moleküls. Da besonders diese äußeren Elektronen die Eigenschaften der Moleküle bestimmen, ist es wichtig, dass gerade sie korrekt von einer Theorie beschrieben werden.

Aus prinzipiellen Gründen ist es nun aber unmöglich, die Aufenthaltsorte von Elektronen präzise zu ermitteln. Die physikalische Forschung kann lediglich Bereiche definieren, in denen sich mit hoher Wahrscheinlichkeit Elektronen befinden. Diese Bereiche, die als Orbitale bezeichnet werden, lassen sich einerseits theoretisch berechnen. Andererseits liefert die Photoelektronenspektroskopie (PES) empirische Daten, die es erlauben, die räumliche Gestalt solcher Bereiche zu rekonstruieren. Dadurch wird eine graphische Darstellung der Orbitale möglich.

Für kleine Moleküle stimmen die theoretisch berechneten und die experimentell bestimmten Orbitale häufig überein. Wenn es hingegen um technologisch interessante große Moleküle wie organische Halbleiter geht, gibt es eine solche Übereinstimmung in der Regel nicht. Die Bayreuther Arbeitsgruppe um Prof. Dr. Stephan Kümmel konnte jedoch – im Rahmen der Dichtefunktionaltheorie – ein Konzept entwickeln, das es erlaubt, die Orbitale von Elektronen mit hoher Genauigkeit zu berechnen. Sein Mitarbeiter Matthias Dauth hat dieses Verfahren auf Moleküle organischer Halbleiter angewendet. Anschließend hat er die Ergebnisse mit Berechnungen verglichen, zu denen die physikalische Forschung von anderen theoretischen Ansätzen aus gelangt. "Die Unterschiede waren signifikant", berichtet Dauth."Um nachzuweisen, dass das in Bayreuth entwickelte Berechnungsverfahren die präziseren Vorhersagen erlaubt, war daher der Vergleich mit experimentellen Ergebnissen, also möglichst leistungsstarken spektroskopischen Untersuchungen, ausgesprochen wichtig."

Deshalb haben die Bayreuther Physiker die Zusammenarbeit mit Forschergruppen an der Universität Würzburg und der Universität Hiroshima gesucht. In Würzburg arbeiten Dr. Achim Schöll und Prof. Dr. Friedrich Reinert, Lehrstuhl für Experimentelle Physik VII, schon seit längerer Zeit daran, die Photoelektronenspektroskopie (PES) auf komplexe Moleküle anzuwenden. Die Versuchsreihen, die sie mit ihren Mitarbeitern an organischen Halbleitern durchgeführt haben, bestätigen die Bayreuther Berechnungen. Die Orbitale, die für Elektronen in den Randbereichen dieser Moleküle theoretisch prognostiziert worden waren, stimmen auf eindrucksvolle Weise mit den Orbitalen überein, die auf der Basis empirischer Daten sichtbar gemacht werden konnten.

"Diese Übereinstimmung von Theorie und Experiment ermutigt uns, das theoretische Konzept weiterzuentwickeln, um die Elektroneneigenschaften noch genauer bestimmen zu können", erklärt Kümmel. "Wir gewinnen auf diese Weise direkten Einblick in die elektronischen Eigenschaften von Materialien, die sich für neue Halbleitertechnologien mit großem Gewinn nutzen lassen, nicht zuletzt bei der Entwicklung effizienter Verfahren der Stromerzeugung."

Veröffentlichung:

M. Dauth, T. Körzdörfer, and S. Kümmel; J. Ziroff, M. Wiessner, A. Schöll, and F. Reinert;
M. Arita and K. Shimada:
Orbital Density Reconstruction for Molecules,
in: Physical Review Letters 107, 193002 (2011)
DOI-Bookmark: 10.1103/PhysRevLett.107.193002
Ansprechpartner:
Prof. Dr. Stephan Kümmel
Theoretische Physik IV
Universität Bayreuth
D-95440 Bayreuth
Tel.: +49 (0)921 / 55-3220
E-Mail: stephan.kuemmel@uni-bayreuth.de

Christian Wißler | idw
Weitere Informationen:
http://www.uni-bayreuth.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Proteintransport - Stau in der Zelle
24.03.2017 | Ludwig-Maximilians-Universität München

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise