Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie Elektronen schwingende Atomkerne überholen – Der Röntgenfilm

20.03.2012
Forscher des Max-Born-Institutes in Berlin verfolgten in Echtzeit die räumliche Schwingungsbewegung von Elektronen in einem Kristall, in dem sie einen Film mit Hilfe von ultrakurzen Röntgen-Blitzen drehten. Die äußeren Elektronen bewegen sich auf der Längenskala einer chemischen Bindung vor und zurück und modulieren somit die elektrischen Eigenschaften, während sich dabei die inneren Elektronen und die Atomkerne nur um 1% dieser Strecke bewegen.

Ein Kristall besteht aus einer regelmäßigen Anordnung von Atomen im Raum, auch Kristallgitter genannt, welches mit Hilfe der gegenseitigen, elektrostatischen Anziehungskräfte der Elektronenwolken benachbarter Atome zusammen gehalten wird. Die meisten der Elektronen sind stark an einen individuellen, positiv geladenen Atomkern gebunden. Die äußersten Elektronen eines Atoms heißen Valenzelektronen und bauen die Bindung zu den Nachbaratomen auf. Diese Bindungen bestimmen den Atomabstand im Kristall sowie wesentliche Eigenschaften, wie etwa seine elektrische Leitfähigkeit oder mechanische Stabilität.


(A) Einheitszelle des KDP-Kristalls [gelbe Kugeln: Phosphoratome (P), rosa: Kalium (K), rot: Sauerstoff (O), weiß: Wasserstoff. (B) Elektronendichte „Landkarte“ in dem eingezeichneten Rechteck vor der Laseranregung. Die schwarzen Linien deuten die Schachteln für verschiedene Atome an, in denen die Ladungsmenge und der Schwerpunkt der Ladungswolke gemessen werden. (C) und (D) Änderung der Ladungsdichte nach Laseranregung (rot: Ladungszunahme, blau: Abnahme). (E) Positionen der Atome in dieser Ebene und der Ladungsaustausch zwischen Phosphor und Sauerstoff. Die Elektronenwolke des Kaliumatoms zeigt Verzerrungen zwischen einer Zigarren- bzw. Pfannkuchen-Form. Abb. MBI

Die Atome in einem Kristallgitter sind nicht etwa in Ruhe, sondern schwingen um ihre jeweilige Gleichgewichtsposition. Die räumliche Auslenkung der Bewegung der Atomkerne zusammen mit ihren Elektronen in den inneren Schalen beträgt typischerweise nur ein Prozent des Abstandes zwischen den Atomen. Wie sich die äußeren Valenzelektronen während dieser Gitterschwingung verhalten, war bislang nicht klar und die Größe ihrer Auslenkung gänzlich unbekannt. Eine direkte Messung dieser Bewegung in Echtzeit ist sehr wichtig für ein grundlegendes Verständnis der statischen und dynamischen elektrischen Eigenschaften des Kristalls.

Um diese offene Frage zu klären, haben Flavio Zamponi, Philip Rothhardt, Johannes Stingl, Michael Wörner und Thomas Elsässer ein Röntgen-Reaktionsmikroskop gebaut, das eine Aufnahme der Elektronenbewegung in Echtzeit in einem Kristall erlaubt. Wie sie in der neuesten Ausgabe der Fachzeitschrift PNAS (doi/10.1073/pnas.1108206109) berichten, werden Gitterschwingungen in einem Kaliumdihydrogenphosphat (KDP)-Kristall mit Hilfe eines Laserblitzes angestoßen, der nur 50 Femtosekunden (1 fs = 10 hoch -15 Sekunden) dauert. Die momentanen Positionen der Atome und Elektronen werden dabei mit hoher räumlicher Auflösung mithilfe von 100 fs langen Röntgenblitzen gemessen, welche von den schwingenden Atomen gebeugt werden. Röntgenfotos, die zu verschiedenen Zeiten nach dem Start der Schwingung geschossen werden, bilden zusammen den gewünschten Röntgenfilm.

Es war eine große Überraschung für die Forscher aus Berlin, dass nach Anregung einer speziellen Schwingung in KDP, der sogenannten „weichen“ Schwingung (engl. soft mode), die äußeren Valenzelektronen sich um eine 30-mal größere Entfernung während der Schwingung bewegten als die Atomkerne und deren Elektronen in den inneren Schalen. Dieses Verhalten kann man direkt in den Elektronendichte-„Landkarten“ in Bild 1 beobachten. Währende der soft-mode Oszillation bewegt sich ein ursprünglich auf dem Phosphor (P)-Atom sitzendes Elektron zu einem seiner Sauerstoff (O)-Nachbarn (P-O Bindungslänge: 160 Pikometer (10 hoch -12 m)) und kehrt nach einer halben Oszillationsperiode wieder zum P-Atom zurück. Überraschenderweise bewegen sich dabei die beteiligten Atome nur wenige Pikometer, im krassen Gegensatz zum Lehrbuchwissen, nach dem man eine gemeinsame Bewegung aller Elektronen eines Atoms mit seinem Kern erwartet. Die überraschend weite Bewegung der Valenzelektronen kann man mit Hilfe der elektrostatischen Kräfte verstehen, die das schwingende Ionenkristallgitter während der soft-mode Oszillation auf die Elektronen ausübt. In den 1960er Jahren wurden schon Theorien entwickelt, die ein solches Verhalten vorhersagten. Jetzt ist endlich der experimentelle Nachweis gelungen. In dem begefügten Film sieht man die Iso-Elektronendichte-Oberfläche des Kaliumions und des Phosphations während einer soft-mode Oszillation in KDP.

Die neu entwickelte Pulvermethode der Femtosekunden-Röntgenbeugung kann auf viele andere Systeme angewendet werden, um ultraschnelle chemische und physikalische Strukturänderungen abzubilden.

Video
http://www.fv-berlin.de/news/videos/roentgenfilm/view
Originalarbeit:
doi/10.1073/pnas.1108206109

Christine Vollgraf | Forschungsverbund Berlin e.V.
Weitere Informationen:
http://www.mbi-berlin.de/
http://www.fv-berlin.de/news/videos/roentgenfilm/view

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Eine Extra-Sekunde zum neuen Jahr
08.12.2016 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht Heimcomputer entdecken rekordverdächtiges Pulsar-Neutronenstern-System
08.12.2016 | Max-Planck-Institut für Radioastronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einzelne Proteine bei der Arbeit beobachten

08.12.2016 | Biowissenschaften Chemie

Intelligente Filter für innovative Leichtbaukonstruktionen

08.12.2016 | Messenachrichten

Seminar: Ströme und Spannungen bedarfsgerecht schalten!

08.12.2016 | Seminare Workshops