Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie Elektronen schwingende Atomkerne überholen – Der Röntgenfilm

20.03.2012
Forscher des Max-Born-Institutes in Berlin verfolgten in Echtzeit die räumliche Schwingungsbewegung von Elektronen in einem Kristall, in dem sie einen Film mit Hilfe von ultrakurzen Röntgen-Blitzen drehten. Die äußeren Elektronen bewegen sich auf der Längenskala einer chemischen Bindung vor und zurück und modulieren somit die elektrischen Eigenschaften, während sich dabei die inneren Elektronen und die Atomkerne nur um 1% dieser Strecke bewegen.

Ein Kristall besteht aus einer regelmäßigen Anordnung von Atomen im Raum, auch Kristallgitter genannt, welches mit Hilfe der gegenseitigen, elektrostatischen Anziehungskräfte der Elektronenwolken benachbarter Atome zusammen gehalten wird. Die meisten der Elektronen sind stark an einen individuellen, positiv geladenen Atomkern gebunden. Die äußersten Elektronen eines Atoms heißen Valenzelektronen und bauen die Bindung zu den Nachbaratomen auf. Diese Bindungen bestimmen den Atomabstand im Kristall sowie wesentliche Eigenschaften, wie etwa seine elektrische Leitfähigkeit oder mechanische Stabilität.


(A) Einheitszelle des KDP-Kristalls [gelbe Kugeln: Phosphoratome (P), rosa: Kalium (K), rot: Sauerstoff (O), weiß: Wasserstoff. (B) Elektronendichte „Landkarte“ in dem eingezeichneten Rechteck vor der Laseranregung. Die schwarzen Linien deuten die Schachteln für verschiedene Atome an, in denen die Ladungsmenge und der Schwerpunkt der Ladungswolke gemessen werden. (C) und (D) Änderung der Ladungsdichte nach Laseranregung (rot: Ladungszunahme, blau: Abnahme). (E) Positionen der Atome in dieser Ebene und der Ladungsaustausch zwischen Phosphor und Sauerstoff. Die Elektronenwolke des Kaliumatoms zeigt Verzerrungen zwischen einer Zigarren- bzw. Pfannkuchen-Form. Abb. MBI

Die Atome in einem Kristallgitter sind nicht etwa in Ruhe, sondern schwingen um ihre jeweilige Gleichgewichtsposition. Die räumliche Auslenkung der Bewegung der Atomkerne zusammen mit ihren Elektronen in den inneren Schalen beträgt typischerweise nur ein Prozent des Abstandes zwischen den Atomen. Wie sich die äußeren Valenzelektronen während dieser Gitterschwingung verhalten, war bislang nicht klar und die Größe ihrer Auslenkung gänzlich unbekannt. Eine direkte Messung dieser Bewegung in Echtzeit ist sehr wichtig für ein grundlegendes Verständnis der statischen und dynamischen elektrischen Eigenschaften des Kristalls.

Um diese offene Frage zu klären, haben Flavio Zamponi, Philip Rothhardt, Johannes Stingl, Michael Wörner und Thomas Elsässer ein Röntgen-Reaktionsmikroskop gebaut, das eine Aufnahme der Elektronenbewegung in Echtzeit in einem Kristall erlaubt. Wie sie in der neuesten Ausgabe der Fachzeitschrift PNAS (doi/10.1073/pnas.1108206109) berichten, werden Gitterschwingungen in einem Kaliumdihydrogenphosphat (KDP)-Kristall mit Hilfe eines Laserblitzes angestoßen, der nur 50 Femtosekunden (1 fs = 10 hoch -15 Sekunden) dauert. Die momentanen Positionen der Atome und Elektronen werden dabei mit hoher räumlicher Auflösung mithilfe von 100 fs langen Röntgenblitzen gemessen, welche von den schwingenden Atomen gebeugt werden. Röntgenfotos, die zu verschiedenen Zeiten nach dem Start der Schwingung geschossen werden, bilden zusammen den gewünschten Röntgenfilm.

Es war eine große Überraschung für die Forscher aus Berlin, dass nach Anregung einer speziellen Schwingung in KDP, der sogenannten „weichen“ Schwingung (engl. soft mode), die äußeren Valenzelektronen sich um eine 30-mal größere Entfernung während der Schwingung bewegten als die Atomkerne und deren Elektronen in den inneren Schalen. Dieses Verhalten kann man direkt in den Elektronendichte-„Landkarten“ in Bild 1 beobachten. Währende der soft-mode Oszillation bewegt sich ein ursprünglich auf dem Phosphor (P)-Atom sitzendes Elektron zu einem seiner Sauerstoff (O)-Nachbarn (P-O Bindungslänge: 160 Pikometer (10 hoch -12 m)) und kehrt nach einer halben Oszillationsperiode wieder zum P-Atom zurück. Überraschenderweise bewegen sich dabei die beteiligten Atome nur wenige Pikometer, im krassen Gegensatz zum Lehrbuchwissen, nach dem man eine gemeinsame Bewegung aller Elektronen eines Atoms mit seinem Kern erwartet. Die überraschend weite Bewegung der Valenzelektronen kann man mit Hilfe der elektrostatischen Kräfte verstehen, die das schwingende Ionenkristallgitter während der soft-mode Oszillation auf die Elektronen ausübt. In den 1960er Jahren wurden schon Theorien entwickelt, die ein solches Verhalten vorhersagten. Jetzt ist endlich der experimentelle Nachweis gelungen. In dem begefügten Film sieht man die Iso-Elektronendichte-Oberfläche des Kaliumions und des Phosphations während einer soft-mode Oszillation in KDP.

Die neu entwickelte Pulvermethode der Femtosekunden-Röntgenbeugung kann auf viele andere Systeme angewendet werden, um ultraschnelle chemische und physikalische Strukturänderungen abzubilden.

Video
http://www.fv-berlin.de/news/videos/roentgenfilm/view
Originalarbeit:
doi/10.1073/pnas.1108206109

Christine Vollgraf | Forschungsverbund Berlin e.V.
Weitere Informationen:
http://www.mbi-berlin.de/
http://www.fv-berlin.de/news/videos/roentgenfilm/view

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Schnell wachsende Galaxien könnten kosmisches Rätsel lösen – zeigen früheste Verschmelzung
26.05.2017 | Max-Planck-Institut für Astronomie

nachricht 3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind
24.05.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

Staphylococcus aureus ist aufgrund häufiger Resistenzen gegenüber vielen Antibiotika ein gefürchteter Erreger (MRSA) insbesondere bei Krankenhaus-Infektionen. Forscher des Paul-Ehrlich-Instituts haben immunologische Prozesse identifiziert, die eine erfolgreiche körpereigene, gegen den Erreger gerichtete Abwehr verhindern. Die Forscher konnten zeigen, dass sich durch Übertragung von Protein oder Boten-RNA (mRNA, messenger RNA) des Erregers auf Immunzellen die Immunantwort in Richtung einer aktiven Erregerabwehr verschieben lässt. Dies könnte für die Entwicklung eines wirksamen Impfstoffs bedeutsam sein. Darüber berichtet PLOS Pathogens in seiner Online-Ausgabe vom 25.05.2017.

Staphylococcus aureus (S. aureus) ist ein Bakterium, das bei weit über der Hälfte der Erwachsenen Haut und Schleimhäute besiedelt und dabei normalerweise keine...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

DFG fördert 15 neue Sonderforschungsbereiche (SFB)

26.05.2017 | Förderungen Preise

Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

26.05.2017 | Biowissenschaften Chemie

Unglaublich formbar: Lesen lernen krempelt Gehirn selbst bei Erwachsenen tiefgreifend um

26.05.2017 | Gesellschaftswissenschaften