Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie Elektronen schwingende Atomkerne überholen – Der Röntgenfilm

20.03.2012
Forscher des Max-Born-Institutes in Berlin verfolgten in Echtzeit die räumliche Schwingungsbewegung von Elektronen in einem Kristall, in dem sie einen Film mit Hilfe von ultrakurzen Röntgen-Blitzen drehten. Die äußeren Elektronen bewegen sich auf der Längenskala einer chemischen Bindung vor und zurück und modulieren somit die elektrischen Eigenschaften, während sich dabei die inneren Elektronen und die Atomkerne nur um 1% dieser Strecke bewegen.

Ein Kristall besteht aus einer regelmäßigen Anordnung von Atomen im Raum, auch Kristallgitter genannt, welches mit Hilfe der gegenseitigen, elektrostatischen Anziehungskräfte der Elektronenwolken benachbarter Atome zusammen gehalten wird. Die meisten der Elektronen sind stark an einen individuellen, positiv geladenen Atomkern gebunden. Die äußersten Elektronen eines Atoms heißen Valenzelektronen und bauen die Bindung zu den Nachbaratomen auf. Diese Bindungen bestimmen den Atomabstand im Kristall sowie wesentliche Eigenschaften, wie etwa seine elektrische Leitfähigkeit oder mechanische Stabilität.


(A) Einheitszelle des KDP-Kristalls [gelbe Kugeln: Phosphoratome (P), rosa: Kalium (K), rot: Sauerstoff (O), weiß: Wasserstoff. (B) Elektronendichte „Landkarte“ in dem eingezeichneten Rechteck vor der Laseranregung. Die schwarzen Linien deuten die Schachteln für verschiedene Atome an, in denen die Ladungsmenge und der Schwerpunkt der Ladungswolke gemessen werden. (C) und (D) Änderung der Ladungsdichte nach Laseranregung (rot: Ladungszunahme, blau: Abnahme). (E) Positionen der Atome in dieser Ebene und der Ladungsaustausch zwischen Phosphor und Sauerstoff. Die Elektronenwolke des Kaliumatoms zeigt Verzerrungen zwischen einer Zigarren- bzw. Pfannkuchen-Form. Abb. MBI

Die Atome in einem Kristallgitter sind nicht etwa in Ruhe, sondern schwingen um ihre jeweilige Gleichgewichtsposition. Die räumliche Auslenkung der Bewegung der Atomkerne zusammen mit ihren Elektronen in den inneren Schalen beträgt typischerweise nur ein Prozent des Abstandes zwischen den Atomen. Wie sich die äußeren Valenzelektronen während dieser Gitterschwingung verhalten, war bislang nicht klar und die Größe ihrer Auslenkung gänzlich unbekannt. Eine direkte Messung dieser Bewegung in Echtzeit ist sehr wichtig für ein grundlegendes Verständnis der statischen und dynamischen elektrischen Eigenschaften des Kristalls.

Um diese offene Frage zu klären, haben Flavio Zamponi, Philip Rothhardt, Johannes Stingl, Michael Wörner und Thomas Elsässer ein Röntgen-Reaktionsmikroskop gebaut, das eine Aufnahme der Elektronenbewegung in Echtzeit in einem Kristall erlaubt. Wie sie in der neuesten Ausgabe der Fachzeitschrift PNAS (doi/10.1073/pnas.1108206109) berichten, werden Gitterschwingungen in einem Kaliumdihydrogenphosphat (KDP)-Kristall mit Hilfe eines Laserblitzes angestoßen, der nur 50 Femtosekunden (1 fs = 10 hoch -15 Sekunden) dauert. Die momentanen Positionen der Atome und Elektronen werden dabei mit hoher räumlicher Auflösung mithilfe von 100 fs langen Röntgenblitzen gemessen, welche von den schwingenden Atomen gebeugt werden. Röntgenfotos, die zu verschiedenen Zeiten nach dem Start der Schwingung geschossen werden, bilden zusammen den gewünschten Röntgenfilm.

Es war eine große Überraschung für die Forscher aus Berlin, dass nach Anregung einer speziellen Schwingung in KDP, der sogenannten „weichen“ Schwingung (engl. soft mode), die äußeren Valenzelektronen sich um eine 30-mal größere Entfernung während der Schwingung bewegten als die Atomkerne und deren Elektronen in den inneren Schalen. Dieses Verhalten kann man direkt in den Elektronendichte-„Landkarten“ in Bild 1 beobachten. Währende der soft-mode Oszillation bewegt sich ein ursprünglich auf dem Phosphor (P)-Atom sitzendes Elektron zu einem seiner Sauerstoff (O)-Nachbarn (P-O Bindungslänge: 160 Pikometer (10 hoch -12 m)) und kehrt nach einer halben Oszillationsperiode wieder zum P-Atom zurück. Überraschenderweise bewegen sich dabei die beteiligten Atome nur wenige Pikometer, im krassen Gegensatz zum Lehrbuchwissen, nach dem man eine gemeinsame Bewegung aller Elektronen eines Atoms mit seinem Kern erwartet. Die überraschend weite Bewegung der Valenzelektronen kann man mit Hilfe der elektrostatischen Kräfte verstehen, die das schwingende Ionenkristallgitter während der soft-mode Oszillation auf die Elektronen ausübt. In den 1960er Jahren wurden schon Theorien entwickelt, die ein solches Verhalten vorhersagten. Jetzt ist endlich der experimentelle Nachweis gelungen. In dem begefügten Film sieht man die Iso-Elektronendichte-Oberfläche des Kaliumions und des Phosphations während einer soft-mode Oszillation in KDP.

Die neu entwickelte Pulvermethode der Femtosekunden-Röntgenbeugung kann auf viele andere Systeme angewendet werden, um ultraschnelle chemische und physikalische Strukturänderungen abzubilden.

Video
http://www.fv-berlin.de/news/videos/roentgenfilm/view
Originalarbeit:
doi/10.1073/pnas.1108206109

Christine Vollgraf | Forschungsverbund Berlin e.V.
Weitere Informationen:
http://www.mbi-berlin.de/
http://www.fv-berlin.de/news/videos/roentgenfilm/view

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Quantenmechanik ist komplex genug – vorerst …
21.04.2017 | Universität Wien

nachricht Tief im Inneren von M87
20.04.2017 | Max-Planck-Institut für Radioastronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Immunzellen helfen bei elektrischer Reizleitung im Herzen

Erstmals elektrische Kopplung von Muskelzellen und Makrophagen im Herzen nachgewiesen / Erkenntnisse könnten neue Therapieansätze bei Herzinfarkt und Herzrhythmus-Störungen ermöglichen / Publikation am 20. April 2017 in Cell

Makrophagen, auch Fresszellen genannt, sind Teil des Immunsystems und spielen eine wesentliche Rolle in der Abwehr von Krankheitserregern und bei der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Forschungsexpedition „Meere und Ozeane“ mit dem Ausstellungsschiff MS Wissenschaft

24.04.2017 | Veranstaltungen

3. Bionik-Kongress Baden-Württemberg

24.04.2017 | Veranstaltungen

Smart-Data-Forschung auf dem Weg in die wirtschaftliche Praxis

21.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Phoenix Contact übernimmt Spezialisten für Netzleittechnik

24.04.2017 | Unternehmensmeldung

Phoenix Contact beteiligt sich an Berliner Start-up Unternehmen für Energiemanagement

24.04.2017 | Unternehmensmeldung

Phoenix Contact übernimmt Spezialisten für industrielle Kommunikationstechnik

24.04.2017 | Unternehmensmeldung