Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Elektronen im Rückwärtsgang – Vierteilchendynamik der Transfer-Ionisation in Ion-Helium-Kollisionen

17.02.2012
Bei Transfer-Ionisation eines Helium-Atoms im Stoß mit einem Ion wird eines der beiden Elektronen des Atoms von dem Ion eingefangen und zugleich das andere freigesetzt.

Eine umfassende experimentelle Studie dieses fundamentalen Vierkörpersystems zeigt eine bevorzugte Emission des Elektrons entgegen der Flugrichtung des Ions. Dieser Befund bestätigt einen theoretisch vorhergesagten neuen Mechanismus in einem überraschend weiten dynamischen Bereich. Eine wichtige Rolle spielt hier die gegenseitige Abstoßung der Elektronen (Physical Review Letters, 26. Januar 2012).


Abb. 1. Winkelverteilung des freigesetzten Elektrons relativ zur Flugrichtung des Projektils für Li3+-He-Stöße. Transfer-Ionisation: (a) gemessene Daten, (b) Theorie (e-e-Prozess + unabhängiger Prozess). Theorie: (c) Einfachionisation, (d) unabhängiger Prozess allein. Grafik: MPI für Kernphysik


Abb. 2. Schematische Illustration zur Transferionisation p + He: (a) e-e-Prozess, (b) unabhängiger Prozess. (c) Impulsverteilung des freigesetzten Elektrons entlang der Projektilrichtung: Experiment (Punkte) und Theorie (Linien). Grafik: MPI für Kernphysik

„Ein, zwei, viele …“ – so könnte man die mathematischen Schwierigkeiten zusammenfassen, welchen sich die Physik in der Beschreibung mehrerer Teilchen stellen muss, wenn deren Wechselwirkung über große Distanzen reicht, wie es bei der Gravitation zwischen Massen und der elektrischen Abstoßung bzw. Anziehung zwischen Ladungen der Fall ist. Das Zweikörperproblem wurde bereits von Newton gelöst, der damit die den Keplerschen Gesetzen folgenden Umläufe der Himmelskörper auf Basis des Gravitationsgesetzes und der von ihm begründeten „klassischen“ Mechanik in mathematisch geschlossener Form darstellen konnte.

Auch in der Quantenphysik erweist sich das Wasserstoffatom als Zweikörperproblem des Mikrokosmos im Sinne der Schrödingerschen Wellenmechanik ohne Näherungen lösbar. Aber schon bei drei (und mehr) Teilchen ist man auf Näherungsverfahren und numerische Methoden angewiesen. Dies hat sich zuerst in der Himmelsmechanik gezeigt, wenn man z. B. die Gravitation der Planeten untereinander nicht vernachlässigen will. Gleiches gilt für die Quantenphysik, wobei inzwischen sowohl experimentell als auch – nicht zuletzt dank schneller und leistungsfähiger Computer – in der Theorie erhebliche Fortschritte erzielt wurden.

Ein Modellsystem für das Vierkörperproblem ist die Kollision eines Ions (z. B. ein Proton) als Projektil mit einem Heliumatom als Target, das aus seinem Atomkern und zwei Elektronen besteht. Hierbei sind das Projektil und der Targetkern positiv, die Elektronen negativ geladen, und in einer vollständigen Beschreibung müssen alle wechselseitigen anziehenden bzw. abstoßenden elektrischen Kräfte berücksichtigt werden. Ein besonders interessanter Prozess bei einem solchen Stoß ist die so genannte Transfer-Ionisation. Hier wird eines der Elektronen von dem Ion eingefangen, während zugleich das andere Elektron freigesetzt wird. Ist das Projektil ein Proton, so hat man im Endzustand ein doppelt ionisiertes Helium-Ion (Heliumkern), ein Wasserstoffatom (Proton plus eingefangenes Elektron) und ein freies Elektron. Ein wichtiger Parameter dabei ist die so genannte Störung, der Quotient aus Ladung und Geschwindigkeit des Projektils als Maß für die Stärke und Dauer der Wechselwirkung. Um den zugrunde liegenden Mechanismen der Transfer-Ionisation genauer auf den Grund zu gehen, haben Physiker des Heidelberger Max-Planck-Instituts für Kernphysik (MPIK), der Missouri University of Science & Technology und der Universität Frankfurt die Reaktionsprodukte umfassend und mit hoher Genauigkeit vermessen. Die Geschwindigkeiten und Richtungen der Teilchen geben dabei Aufschluss darüber, wie ein solcher Prozess im Detail abläuft.

Durchgeführt wurden die Experimente am TSR-Speicherring des MPIK und am Institut für Kernphysik der Universität Frankfurt mit einem so genannten Reaktionsmikroskop zum Nachweis der Reaktionsprodukte. Im Ergebnis zeigte sich, dass das bei Transfer-Ionisation freigesetzte Elektron vorzugsweise entgegen der Flugrichtung des Projektils beobachtet wird (Abb. 1a). Eine Tendenz zur Emission in Rückwärtsrichtung wurde bereits früher in Experimenten der Frankfurter Gruppe beobachtet, nicht aber in dieser Bündelung und Deutlichkeit. Als Erklärung dient ein Mechanismus, der erst vor einigen Jahren von Alexander Voitkiv, theoretischer Physiker am MPIK, vorgeschlagen und berechnet wurde. Die zugrunde liegende Idee ist recht einfach: das Projektil bewegt sich in den betrachteten Fällen deutlich schneller als das um den Heliumkern kreisende einzufangende Elektron. „Dieses muss sozusagen auf den fahrenden Zug aufspringen“, so Daniel Fischer, Leiter einer Emmy-Noether-Nachwuchsgruppe am MPIK. „Dabei gilt Newtons Prinzip ‚actio = reactio“, d. h. das Elektron braucht einen Rückstoßpartner, um sich auf die Geschwindigkeit des Projektils zu beschleunigen“. Eine Möglichkeit ist die Wechselwirkung mit dem anderen Elektron (e-e-Prozess), welches dabei freigesetzt wird und einen Rückstoß in die entgegengesetzte Richtung erfährt (Abb. 2a). Der Heliumkern spielt hier mehr die Rolle eines fast passiven „Zuschauers“.

Freilich kann auch das Projektil selbst das andere Elektron herausschlagen (Abb 2b), welches dann aber eher seitwärts emittiert wird (Abb 1d). Von der Charakteristik ähnelt dies dann einer direkten Ionisation des Heliumatoms im Ionenstoß (Abb. 1c). Beide Mechanismen zeigen sich deutlich im Experiment, wobei der e-e-Prozess sogar dominieren kann. „Bemerkenswert ist die Tatsache, dass wir den e-e-Prozess auch noch bei recht großen Störungen durch das Projektil so deutlich sehen“, sagt Michael Schulz aus Missouri, zurzeit Gastwissenschaftler am MPIK. „Wir hätten eher erwartet, dass hier die Wechselwirkung mit dem Projektil überwiegt.“ Insgesamt bestätigen die Resultate aber die theoretischen Rechnungen recht zufriedenstellend (Abb. 1b). Offen bleibt noch die Frage, welche Rolle Quanteneffekte in Gestalt einer Interferenz beider Reaktionswege spielen. Hierfür gibt es Anzeichen in den Messergebnissen im Vergleich zur Theorie (Abb 2c), in welcher beide Mechanismen noch unabhängig behandelt wurden.

Originalveröffentlichung:
M. Schulz, X. Wang, M. Gundmundsson, K. Schneider, A. Kelkar, A. B. Voitkiv, B. Najjari, M. Schöffler, L. Ph. H. Schmidt, R. Dörner, J. Ullrich, R. Moshammer and D. Fischer:
Strongly Enhanced Backward Emission of Electrons in Transfer and Ionization
Physical Review Letters 108, 043202 (2012)
http://link.aps.org/doi/10.1103/PhysRevLett.108.043202
doi: 10.1103/PhysRevLett.108.043202
Kontakt:
Dr. Daniel Fischer
Tel.: (+49)6221-516-259
E-Mail: daniel.fischer (at) mpi-hd.mpg.de
Max-Planck-Institut für Kernphysik
Prof. Dr. Michael Schulz
Tel.: (+49)6221-516-461 (MPIK)
E-Mail: schulz (at) mst.edu
Missouri University of Science & Technology
Prof. Dr. Reinhard Dörner
Tel.: (+49)069-798-47003
E-Mail: doerner (at) atom.uni-frankfurt.de
Institut für Kernphysik, Goethe-Universität Frankfurt

Dr. Bernold Feuerstein | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/472676/pressemitteilung20030311
http://link.aps.org/doi/10.1103/PhysRevLett.101.223201
http://www.mpi-hd.mpg.de/prioc/de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Waschen für die Mikrowelt – Potsdamer Physiker entwickeln lichtempfindliche Seife
02.12.2016 | Universität Potsdam

nachricht Quantenreibung: Jenseits der Näherung des lokalen Gleichgewichts
01.12.2016 | Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie