Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Elektronen "surfen" wie Fische auf Wellen

22.09.2011
RUB-Forscher berichten in "Nature"
RUB-Forscher in Nature: Transport einzelner Elektronen geglückt
Auf dem Weg zum komplexen Quantenbit und dem Computer von morgen
Ein entscheidender Schritt zu erheblich leistungsfähigeren Computern ist Physikern der RUB zusammen mit Forschern aus Grenoble und Tokyo gelungen: Aus dem Schwarm an Elektronen in elektrischen Leitern und Halbleitern konnten sie mit Hilfe einer Schallwelle ein einzelnes Elektron herauspicken und transportieren. Wie ein Fisch auf einer Welle „surft“ das Elektron von einem Quantenpunkt zum nächsten. Ein einzelnes Elektron auf diese Weise zu manipulieren erlaubt es in Zukunft, statt klassischer Bits („0“- und „1“-Zustände) auch die wesentlich komplexeren Quantenbits zu kombinieren. Über ihre Ergebnisse berichten die Forscher in der internationalen Top-Zeitschrift „Nature“.

3D-Grafik: Die Elektronen sind gelb, die Welle im Kristall ist rot eingezeichnet

Halbleiterphysik: Der Traum eines Anglers

Elektronen sind in elektrischen Leitern (Metallen) und Halbleitern wie Silizium (Si) oder Galliumarsenid (GaAs) frei beweglich wie Fische im Wasser. Allerdings können sie nicht von selbst „schwimmen“, sondern bewegen sich durch elektrische Spannungen (Felder). In einem Metall kommen sie als gewaltiger Fischschwarm vor, der das gesamte Wasservolumen ausfüllt. In Halbleitern sind diese Schwärme weniger dicht, die Abstände zwischen den Fischen sind viel größer. Der Schwarm lässt sich durch äußere elektrische Spannungen zu einer dünnen Schicht nahe der Oberfläche zusammenziehen. Dieser „Traum eines Anglers“ geht für Halbleiterphysiker jetzt in Erfüllung, möglich macht das die neue Methode, die das internationale Forscherteam entwickelt hat: Die Elektronen“fische“ liegen alle in einer Ebene und sind von der Oberfläche aus gut einzeln zugreifbar.

Einen aus der Masse fischen

„Allerdings gibt es keine ‚dicken‘ Fische, denn alle Elektronen sind genau gleich groß und sogar prinzipiell identisch“, erläutert Prof. Dr. Andreas Wieck, Physiker an der RUB. Das Verfahren der Forscher aus Deutschland, Frankreich und Japan ermöglicht es dennoch, aus dem Schwarm einzelne Elektronen „herauszufischen“, über eine bestimmte Strecke zu bewegen und sie dann am Zielpunkt wieder nachzuweisen. Die Strecke betrug im Experiment vier Mikrometer (μm) – das ist zwanzigmal länger als ein hochintegrierter Transistor. Der gezielte Transport einzelner Elektronen trotz der Masse des Schwarms gelingt, indem zuerst zwischen den Spitzen von vier Elektroden ein kleiner Schwarm zu einem nulldimensionalen Objekt, einem „Quantenpunkt“, eingepfercht wird. Dann senden die Wissenschaftler durch eine ineinandergreifende Doppelkamm-Elektrode, an die sie Radiofrequenz anlegen, eine Welle durch den Halbleiterkristall – der ist vergleichbar mit dem Wasser für die Fische. Das Verfahren funktioniert umgekehrt wie der Spannungsblitz in einem „Piezo“-Feuerzeug: Dort wird ein Kristall deformiert, um eine Spannung zu erzeugen; hier deformieren die Forscher den Kristall durch das Anlegen der Spannung, was bei regelmäßiger Wiederholung zu einer Welle führt.

Der Fisch surft auf der Welle

Diese Welle fegt in einer vorgefertigten Probe beispielsweise von links nach rechts mit Schallgeschwindigkeit durch den Mini-Schwarm im Quantenpunkt – im Kristall mit drei Kilometern pro Sekunde. In ihrer Höhe wird sie so eingestellt, dass sie nur genau einen „Fisch“ daraus mitnimmt, der dann auf der Welle im eindimensionalen Kanal „surft“. 4μm rechts davon entfernt befindet sich ein weiterer Quantenpunkt, in dem der „Fisch“ ankommt. Durch die Wiederholung von Wellenpaketen und Messungen konnten die Forscher eine gute Statistik aufbauen, um die Sicherheit des Verfahrens zu messen. Ein einzelnes Elektron mit der Welle herauszupicken, funktionierte in den ersten Experimenten mit einer Wahrscheinlichkeit von 96 Prozent; es wiederzufinden mit 92 Prozent.

Der Clou: Die Ausrichtung der Fische

Die Elektronen“fische“ sind zwar nicht unterscheidbar, können aber ausgerichtet werden, weil sie wie kleine Kreisel eine Drehrichtung („Spin“) haben. Das ist so, als ob man einen Fisch zum Beispiel mit „Kopf nach oben“ ausrichtet, ihn von der Welle mitreißen lässt und ihn im Ziel-Quantenpunkt auch mit „Kopf nach oben“ wiederfindet. Dadurch, dass die Überlebenszeit dieser Spin-Orientierung länger ist als die Surf-Zeit auf der Welle, geschieht das mit hoher Sicherheit. Auch die Quantenbits der Zukunft bestehen aus solchen spin-polarisierten Elektronen. Ihre Forschungsergebnisse erzielten die Wissenschaftler mit Proben, die am Lehrstuhl für Angewandte Festkörperphysik der Ruhr-Universität Bochum durch so genannte Molekularstrahl-Epitaxie hergestellt, in Tokyo strukturiert und schließlich in Grenoble vermessen wurden. Nicht nur die Proben, sondern auch die Konzepte kommen aus Bochum: Prof. Wieck hat bereits vor 21 Jahren die Vision eines Elektronen-Richtkopplers publiziert, den die Forschergruppe jetzt realisiert hat. Dazu erscheint in Kürze eine weitere Veröffentlichung.

Titelaufnahme

Sylvain Hermelin, Shintaro Takada, Michihisa Yamamoto, Seigo Tarucha, Andreas D. Wieck, Laurent Saminadayar, Christopher Bäuerle and Tristan Meunier: Electrons surfing on a sound wave as a platform for quantum optics with flying electrons. DOI: 10.1038/nature10416

Weitere Informationen

Prof. Dr. Andreas Wieck, Angewandte Festkörperphysik, Fakultät für Physik und Astronomie der RUB, Tel. 0234/32-26726, E-Mail: andreas.wieck@rub.de

Homepage: http://www.ruhr-uni-bochum.de/afp/

Redaktion: Jens Wylkop

Dr. Josef König | idw
Weitere Informationen:
http://www.ruhr-uni-bochum.de/afp/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas
19.09.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern
15.09.2017 | Max-Planck-Institut für Quantenoptik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Drohnen sehen auch im Dunkeln

20.09.2017 | Informationstechnologie

Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen

20.09.2017 | Biowissenschaften Chemie

Frühwarnsystem für gefährliche Gase: TUHH-Forscher erreichen Meilenstein

20.09.2017 | Energie und Elektrotechnik