Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Elektronen "surfen" wie Fische auf Wellen

22.09.2011
RUB-Forscher berichten in "Nature"
RUB-Forscher in Nature: Transport einzelner Elektronen geglückt
Auf dem Weg zum komplexen Quantenbit und dem Computer von morgen
Ein entscheidender Schritt zu erheblich leistungsfähigeren Computern ist Physikern der RUB zusammen mit Forschern aus Grenoble und Tokyo gelungen: Aus dem Schwarm an Elektronen in elektrischen Leitern und Halbleitern konnten sie mit Hilfe einer Schallwelle ein einzelnes Elektron herauspicken und transportieren. Wie ein Fisch auf einer Welle „surft“ das Elektron von einem Quantenpunkt zum nächsten. Ein einzelnes Elektron auf diese Weise zu manipulieren erlaubt es in Zukunft, statt klassischer Bits („0“- und „1“-Zustände) auch die wesentlich komplexeren Quantenbits zu kombinieren. Über ihre Ergebnisse berichten die Forscher in der internationalen Top-Zeitschrift „Nature“.

3D-Grafik: Die Elektronen sind gelb, die Welle im Kristall ist rot eingezeichnet

Halbleiterphysik: Der Traum eines Anglers

Elektronen sind in elektrischen Leitern (Metallen) und Halbleitern wie Silizium (Si) oder Galliumarsenid (GaAs) frei beweglich wie Fische im Wasser. Allerdings können sie nicht von selbst „schwimmen“, sondern bewegen sich durch elektrische Spannungen (Felder). In einem Metall kommen sie als gewaltiger Fischschwarm vor, der das gesamte Wasservolumen ausfüllt. In Halbleitern sind diese Schwärme weniger dicht, die Abstände zwischen den Fischen sind viel größer. Der Schwarm lässt sich durch äußere elektrische Spannungen zu einer dünnen Schicht nahe der Oberfläche zusammenziehen. Dieser „Traum eines Anglers“ geht für Halbleiterphysiker jetzt in Erfüllung, möglich macht das die neue Methode, die das internationale Forscherteam entwickelt hat: Die Elektronen“fische“ liegen alle in einer Ebene und sind von der Oberfläche aus gut einzeln zugreifbar.

Einen aus der Masse fischen

„Allerdings gibt es keine ‚dicken‘ Fische, denn alle Elektronen sind genau gleich groß und sogar prinzipiell identisch“, erläutert Prof. Dr. Andreas Wieck, Physiker an der RUB. Das Verfahren der Forscher aus Deutschland, Frankreich und Japan ermöglicht es dennoch, aus dem Schwarm einzelne Elektronen „herauszufischen“, über eine bestimmte Strecke zu bewegen und sie dann am Zielpunkt wieder nachzuweisen. Die Strecke betrug im Experiment vier Mikrometer (μm) – das ist zwanzigmal länger als ein hochintegrierter Transistor. Der gezielte Transport einzelner Elektronen trotz der Masse des Schwarms gelingt, indem zuerst zwischen den Spitzen von vier Elektroden ein kleiner Schwarm zu einem nulldimensionalen Objekt, einem „Quantenpunkt“, eingepfercht wird. Dann senden die Wissenschaftler durch eine ineinandergreifende Doppelkamm-Elektrode, an die sie Radiofrequenz anlegen, eine Welle durch den Halbleiterkristall – der ist vergleichbar mit dem Wasser für die Fische. Das Verfahren funktioniert umgekehrt wie der Spannungsblitz in einem „Piezo“-Feuerzeug: Dort wird ein Kristall deformiert, um eine Spannung zu erzeugen; hier deformieren die Forscher den Kristall durch das Anlegen der Spannung, was bei regelmäßiger Wiederholung zu einer Welle führt.

Der Fisch surft auf der Welle

Diese Welle fegt in einer vorgefertigten Probe beispielsweise von links nach rechts mit Schallgeschwindigkeit durch den Mini-Schwarm im Quantenpunkt – im Kristall mit drei Kilometern pro Sekunde. In ihrer Höhe wird sie so eingestellt, dass sie nur genau einen „Fisch“ daraus mitnimmt, der dann auf der Welle im eindimensionalen Kanal „surft“. 4μm rechts davon entfernt befindet sich ein weiterer Quantenpunkt, in dem der „Fisch“ ankommt. Durch die Wiederholung von Wellenpaketen und Messungen konnten die Forscher eine gute Statistik aufbauen, um die Sicherheit des Verfahrens zu messen. Ein einzelnes Elektron mit der Welle herauszupicken, funktionierte in den ersten Experimenten mit einer Wahrscheinlichkeit von 96 Prozent; es wiederzufinden mit 92 Prozent.

Der Clou: Die Ausrichtung der Fische

Die Elektronen“fische“ sind zwar nicht unterscheidbar, können aber ausgerichtet werden, weil sie wie kleine Kreisel eine Drehrichtung („Spin“) haben. Das ist so, als ob man einen Fisch zum Beispiel mit „Kopf nach oben“ ausrichtet, ihn von der Welle mitreißen lässt und ihn im Ziel-Quantenpunkt auch mit „Kopf nach oben“ wiederfindet. Dadurch, dass die Überlebenszeit dieser Spin-Orientierung länger ist als die Surf-Zeit auf der Welle, geschieht das mit hoher Sicherheit. Auch die Quantenbits der Zukunft bestehen aus solchen spin-polarisierten Elektronen. Ihre Forschungsergebnisse erzielten die Wissenschaftler mit Proben, die am Lehrstuhl für Angewandte Festkörperphysik der Ruhr-Universität Bochum durch so genannte Molekularstrahl-Epitaxie hergestellt, in Tokyo strukturiert und schließlich in Grenoble vermessen wurden. Nicht nur die Proben, sondern auch die Konzepte kommen aus Bochum: Prof. Wieck hat bereits vor 21 Jahren die Vision eines Elektronen-Richtkopplers publiziert, den die Forschergruppe jetzt realisiert hat. Dazu erscheint in Kürze eine weitere Veröffentlichung.

Titelaufnahme

Sylvain Hermelin, Shintaro Takada, Michihisa Yamamoto, Seigo Tarucha, Andreas D. Wieck, Laurent Saminadayar, Christopher Bäuerle and Tristan Meunier: Electrons surfing on a sound wave as a platform for quantum optics with flying electrons. DOI: 10.1038/nature10416

Weitere Informationen

Prof. Dr. Andreas Wieck, Angewandte Festkörperphysik, Fakultät für Physik und Astronomie der RUB, Tel. 0234/32-26726, E-Mail: andreas.wieck@rub.de

Homepage: http://www.ruhr-uni-bochum.de/afp/

Redaktion: Jens Wylkop

Dr. Josef König | idw
Weitere Informationen:
http://www.ruhr-uni-bochum.de/afp/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Max-Planck-Princeton-Partnerschaft in der Fusionsforschung bestätigt
23.11.2017 | Max-Planck-Institut für Plasmaphysik

nachricht Magnetfeld-Sensor Argus „sieht“ Kräfte im Bauteil
23.11.2017 | Helmholtz-Zentrum Dresden-Rossendorf

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Reibungswärme treibt hydrothermale Aktivität auf Enceladus an

Computersimulation zeigt, wie der Eismond Wasser in einem porösen Gesteinskern aufheizt

Wärme aus der Reibung von Gestein, ausgelöst durch starke Gezeitenkräfte, könnte der „Motor“ für die hydrothermale Aktivität auf dem Saturnmond Enceladus sein....

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Kleine Strukturen – große Wirkung

Innovative Schutzschicht für geringen Verbrauch künftiger Rolls-Royce Flugtriebwerke entwickelt

Gemeinsam mit Rolls-Royce Deutschland hat das Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS im Rahmen von zwei Vorhaben aus dem...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: Transparente Beschichtung für Alltagsanwendungen

Sport- und Outdoorbekleidung, die Wasser und Schmutz abweist, oder Windschutzscheiben, an denen kein Wasser kondensiert – viele alltägliche Produkte können von stark wasserabweisenden Beschichtungen profitieren. Am Karlsruher Institut für Technologie (KIT) haben Forscher um Dr. Bastian E. Rapp einen Werkstoff für solche Beschichtungen entwickelt, der sowohl transparent als auch abriebfest ist: „Fluoropor“, einen fluorierten Polymerschaum mit durchgehender Nano-/Mikrostruktur. Sie stellen ihn in Nature Scientific Reports vor. (DOI: 10.1038/s41598-017-15287-8)

In der Natur ist das Phänomen vor allem bei Lotuspflanzen bekannt: Wassertropfen perlen von der Blattoberfläche einfach ab. Diesen Lotuseffekt ahmen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Kinderanästhesie aktuell: Symposium für Ärzte und Pflegekräfte

23.11.2017 | Veranstaltungen

IfBB bei 12th European Bioplastics Conference mit dabei: neue Marktzahlen, neue Forschungsthemen

22.11.2017 | Veranstaltungen

Zahnimplantate: Forschungsergebnisse und ihre Konsequenzen – 31. Kongress der DGI

22.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Kinderanästhesie aktuell: Symposium für Ärzte und Pflegekräfte

23.11.2017 | Veranstaltungsnachrichten

Seminar „Leichtbau im Automobil- und Maschinenbau“ im Haus der Technik Berlin am 16. - 17. Januar 2018

23.11.2017 | Seminare Workshops

Biohausbau-Unternehmen Baufritz erhält von „ Capital“ die Auszeichnung „Beste Ausbilder Deutschlands“

23.11.2017 | Unternehmensmeldung