Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Elektronen-Pingpong in Plasmen

19.06.2009
Bochumer Plasmaphysik-Doktorand schreibt einen der 30 besten Beiträge des Jahres / Journal of Physics D kürt Bochumer Arbeit zum Highlight-Artikel

Die Doktorarbeit ist noch nicht fertig, da lieferte Julian Schulze schon ein Bravourstück ab: Der Beitrag des Bochumer Doktoranden der Plasmaphysik zur Elektronenheizung in technologischen Plasmen wurde vom renommierten britischen ?Journal of Physics D: Applied Physics? zum Highlight des Jahres 2008 gewählt.

Er gehört damit zu den 30 besten von ca. 1.600 Publikationen. Das Journal wird vom britischen Institute of Physics (IOP) herausgegeben, dem Pendant zur Deutschen Physikalischen Gesellschaft.

Die Auswahl basiert auf der Anzahl von Zitaten und Downloads sowie den Gutachten, die vor Publikation von unabhängigen internationalen Experten erstellt werden. Der Bochumer Beitrag ist einer von nur sechs zum Highlight gekürten Arbeiten weltweit aus der Plasmaphysik.

Plasmen für Oberflächenmodifikationen

Die von Julian Schulze, Brian Heil, Dirk Luggenhölscher, Thomas Mussenbrock, Ralf Peter Brinkmann und Uwe Czarnetzki untersuchten Plasmen, so genannte kapazitiv gekoppelte Radio-Frequenz (RF)-Plasmen, sind von großer Bedeutung für verschiedene industrielle Anwendungen. Sie werden häufig für Ätz- und Beschichtungsvorgänge von Oberflächen verwendet, z. B. bei der Herstellung von Computerchips und Solarzellen. Ähnlich wie bei einem Kondensator besteht eine solche Plasma-Entladung aus zwei Elektroden in einer Vakuumkammer, in die kontrolliert geringe Mengen Gas eingeleitet werden. An eine Elektrode wird eine Wechselspannung (Radio-Frequenz) angelegt, die andere ist geerdet. Wie bei vielen industriellen Entladungen fungiert die gesamte Kammerwand als viel größere geerdete Elektrode (Asymmetrie).

Durch die starken elektrischen Felder an der Elektrode werden positiv geladene Teilchen (Ionen) angezogen und damit senkrecht zur Elektrode hin beschleunigt. Bei niedrigen Drücken ist die Neutralteilchendichte in der Kammer so gering, dass die angezogenen Ionen geradewegs und ohne Stöße mit anderen Teilchen senkrecht auf die Elektrode treffen. Diesen hochenergetischen, gerichteten Ionenbeschuss macht man sich in der Industrie zu Nutze, indem man die zu bearbeitende Oberfläche auf die Elektrode legt, wo sie dann durch die Ionen bearbeitet wird.

Theorien versagen bei niedrigen Drücken

Trotz ihrer enormen technologischen Bedeutung sind die Mechanismen, die bei niedrigem Druck zur Plasmaerzeugung führen, bisher nicht im Detail verstanden. Bei hohem Druck und entsprechend hoher Neutralteilchendichte wird den Elektronen hauptsächlich durch so genannte stoßbestimmte ?Ohmsche Heizung? Energie zugeführt. Dabei werden Elektronen im oszillierenden elektrischen Feld im Plasma parallel zum Feld hin und her beschleunigt. Ohne Stöße mit Neutralteilchen (niedriger Druck) ist so kein Netto-Energiegewinn möglich, da die während einer Halbperiode gewonnene Energie während der anderen Halbperiode wieder verloren geht.

Bei hohem Druck führen Stöße mit Neutralteilchen, bei denen die Gesamtenergie erhalten bleibt, dazu, dass Elektronen senkrecht zum Feld gestreut werden. Ihre Energie steckt dann nicht mehr in einer Bewegung parallel zum Feld, sondern senkrecht dazu. Dies führt zu einem Netto-Energiegewinn, da Elektronen in der Richtung senkrecht zum Feld nicht mehr durch das oszillierende Feld abgebremst werden können. Diese Theorie der stoßbestimmten ?Ohmschen Heizung? versagt jedoch im industriell relevanten Niederdruckbereich, da es bei geringer Teilchendichte zu wenige Stöße gibt.

Randschicht stößt Elektronen weg

Die RUB-Physiker konnten nun erstmals experimentell zeigen, wie bei niedrigem Druck die Randschicht vor der Elektrode für die Plasmaentstehung verantwortlich ist: In dieser Schicht befinden sich im Gegensatz zum Plasma selbst nahezu keine Elektronen, sondern nur positiv geladene Ionen. Die Schicht expandiert und kollabiert im Rhythmus der angelegten Wechselspannung (13.56 MHz) unaufhörlich, wobei ein Zyklus etwa 74 Nanosekunden dauert. Bei der Expansion stößt die Randschicht ? wie ein Schläger beim Tennis den Ball ? Elektronen von der Elektrode weg. Diese gerichteten hochenergetischen Elektronen ionisieren das neutrale Gas und erzeugen somit das Plasma. Die hochenergetischen Elektronenstrahlen fliegen ballistisch ins Plasma. Bei extrem niedrigem Druck und entsprechend langer freier Wegstrecke treffen diese ?beams? auf einen Quartzzylinder (5 cm von der Elektrode entfernt). Dort wird der Strahl reflektiert. Trifft der reflektierte Strahl auf die Randschicht vor der Elektrode, wird er erneut reflektiert (Elektronen-Pingpong).

Theorien zur stochastischen Heizung bestätigt

Für den Nachweis maßen die Physiker die elektrischen Felder in der Randschicht mit Hilfe eines Lasersystems und berechneten sie durch ein Modell. Mittels phasenaufgelöster optischer Emissionsspektroskopie wurden hochenergetische Elektronen orts- und zeitaufgelöst detektiert. Parallel wurden der Strom zur Kammerwand und die Spannung über der Entladung gemessen. Mit einer Sonde wurde die Elektronenenergieverteilungsfunktion (EEDF) bestimmt. Durch Strommessungen konnten von RUB-Forschern entwickelte Theorien der nichtlinearen Elektronen-Resonanz-Heizung verifiziert werden. Insbesondere wurde mit Hilfe eines analytischen Modells gezeigt, dass die beobachteten Elektronenstrahlen zu dem gemessenen erhöhten Anteil energetischer Elektronen in der EEDF führen. Somit stellen diese Ergebnisse einen entscheidenden Beitrag auf dem Gebiet der stochastischen Heizung dar.

Titelaufnahme

Julian Schulze, B. G. Heil, D. Luggenhölscher, T. Mussenbrock, R. P. Brinkmann and U. Czarnetzki: Electron beams in asymmetric capacitively coupled radio frequency discharges at low pressures. In: Journal of Physics D: Applied Physics, 41 No 4 (21 February 2008) 042003 (5pp), bis 31.12.2009 frei verfügbar unter: http://www.iop.org/EJ/journal/-page=extra.highlights08/0022-3727

Weitere Informationen

Julian Schulze, Lehrstuhl Experimentalphysik V, insbesondere Plasma- und Atomphysik, der Ruhr-Universität Bochum, Tel. 0234/32-26034, E-Mail: fjschulze@hotmail.com

Redaktion: Meike Drießen

Dr. Josef König | idw
Weitere Informationen:
http://www.ruhr-uni-bochum.de/
http://www.iop.org/EJ/journal/-page=extra.highlights08/0022-3727

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall
22.08.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Im Neptun regnet es Diamanten: Forscherteam enthüllt Innenleben kosmischer Eisgiganten
21.08.2017 | Helmholtz-Zentrum Dresden-Rossendorf

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall

In einem Artikel der aktuellen Ausgabe des Forschungsmagazins „Nature“ berichten Wissenschaftler vom Max-Planck-Institut für Chemische Physik fester Stoffe in Dresden von der Entdeckung eines seltenen Materiezustandes, bei dem sich die Elektronen in einem Kristall gemeinsam in einer Richtung bewegen. Diese Entdeckung berührt eine der offenen Fragestellungen im Bereich der Festkörperphysik: Was passiert, wenn sich Elektronen gemeinsam im Kollektiv verhalten, in sogenannten „stark korrelierten Elektronensystemen“, und wie „einigen sich“ die Elektronen auf ein gemeinsames Verhalten?

In den meisten Metallen beeinflussen sich Elektronen gegenseitig nur wenig und leiten Wärme und elektrischen Strom weitgehend unabhängig voneinander durch das...

Im Focus: Wie ein Bakterium von Methanol leben kann

Bei einem Bakterium, das Methanol als Nährstoff nutzen kann, identifizierten ETH-Forscher alle dafür benötigten Gene. Die Erkenntnis hilft, diesen Rohstoff für die Biotechnologie besser nutzbar zu machen.

Viele Chemiker erforschen derzeit, wie man aus den kleinen Kohlenstoffverbindungen Methan und Methanol grössere Moleküle herstellt. Denn Methan kommt auf der...

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

International führende Informatiker in Paderborn

21.08.2017 | Veranstaltungen

Wissenschaftliche Grundlagen für eine erfolgreiche Klimapolitik

21.08.2017 | Veranstaltungen

DGI-Forum in Wittenberg: Fake News und Stimmungsmache im Netz

21.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fraunhofer IPM präsentiert »Deep Learning Framework« zur automatisierten Interpretation von 3D-Daten

22.08.2017 | Informationstechnologie

Globale Klimaextreme nach Vulkanausbrüchen

22.08.2017 | Geowissenschaften

RWI/ISL-Containerumschlag-Index erreicht neuen Höchstwert

22.08.2017 | Wirtschaft Finanzen