Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Elektronen-Pingpong in Plasmen

19.06.2009
Bochumer Plasmaphysik-Doktorand schreibt einen der 30 besten Beiträge des Jahres / Journal of Physics D kürt Bochumer Arbeit zum Highlight-Artikel

Die Doktorarbeit ist noch nicht fertig, da lieferte Julian Schulze schon ein Bravourstück ab: Der Beitrag des Bochumer Doktoranden der Plasmaphysik zur Elektronenheizung in technologischen Plasmen wurde vom renommierten britischen ?Journal of Physics D: Applied Physics? zum Highlight des Jahres 2008 gewählt.

Er gehört damit zu den 30 besten von ca. 1.600 Publikationen. Das Journal wird vom britischen Institute of Physics (IOP) herausgegeben, dem Pendant zur Deutschen Physikalischen Gesellschaft.

Die Auswahl basiert auf der Anzahl von Zitaten und Downloads sowie den Gutachten, die vor Publikation von unabhängigen internationalen Experten erstellt werden. Der Bochumer Beitrag ist einer von nur sechs zum Highlight gekürten Arbeiten weltweit aus der Plasmaphysik.

Plasmen für Oberflächenmodifikationen

Die von Julian Schulze, Brian Heil, Dirk Luggenhölscher, Thomas Mussenbrock, Ralf Peter Brinkmann und Uwe Czarnetzki untersuchten Plasmen, so genannte kapazitiv gekoppelte Radio-Frequenz (RF)-Plasmen, sind von großer Bedeutung für verschiedene industrielle Anwendungen. Sie werden häufig für Ätz- und Beschichtungsvorgänge von Oberflächen verwendet, z. B. bei der Herstellung von Computerchips und Solarzellen. Ähnlich wie bei einem Kondensator besteht eine solche Plasma-Entladung aus zwei Elektroden in einer Vakuumkammer, in die kontrolliert geringe Mengen Gas eingeleitet werden. An eine Elektrode wird eine Wechselspannung (Radio-Frequenz) angelegt, die andere ist geerdet. Wie bei vielen industriellen Entladungen fungiert die gesamte Kammerwand als viel größere geerdete Elektrode (Asymmetrie).

Durch die starken elektrischen Felder an der Elektrode werden positiv geladene Teilchen (Ionen) angezogen und damit senkrecht zur Elektrode hin beschleunigt. Bei niedrigen Drücken ist die Neutralteilchendichte in der Kammer so gering, dass die angezogenen Ionen geradewegs und ohne Stöße mit anderen Teilchen senkrecht auf die Elektrode treffen. Diesen hochenergetischen, gerichteten Ionenbeschuss macht man sich in der Industrie zu Nutze, indem man die zu bearbeitende Oberfläche auf die Elektrode legt, wo sie dann durch die Ionen bearbeitet wird.

Theorien versagen bei niedrigen Drücken

Trotz ihrer enormen technologischen Bedeutung sind die Mechanismen, die bei niedrigem Druck zur Plasmaerzeugung führen, bisher nicht im Detail verstanden. Bei hohem Druck und entsprechend hoher Neutralteilchendichte wird den Elektronen hauptsächlich durch so genannte stoßbestimmte ?Ohmsche Heizung? Energie zugeführt. Dabei werden Elektronen im oszillierenden elektrischen Feld im Plasma parallel zum Feld hin und her beschleunigt. Ohne Stöße mit Neutralteilchen (niedriger Druck) ist so kein Netto-Energiegewinn möglich, da die während einer Halbperiode gewonnene Energie während der anderen Halbperiode wieder verloren geht.

Bei hohem Druck führen Stöße mit Neutralteilchen, bei denen die Gesamtenergie erhalten bleibt, dazu, dass Elektronen senkrecht zum Feld gestreut werden. Ihre Energie steckt dann nicht mehr in einer Bewegung parallel zum Feld, sondern senkrecht dazu. Dies führt zu einem Netto-Energiegewinn, da Elektronen in der Richtung senkrecht zum Feld nicht mehr durch das oszillierende Feld abgebremst werden können. Diese Theorie der stoßbestimmten ?Ohmschen Heizung? versagt jedoch im industriell relevanten Niederdruckbereich, da es bei geringer Teilchendichte zu wenige Stöße gibt.

Randschicht stößt Elektronen weg

Die RUB-Physiker konnten nun erstmals experimentell zeigen, wie bei niedrigem Druck die Randschicht vor der Elektrode für die Plasmaentstehung verantwortlich ist: In dieser Schicht befinden sich im Gegensatz zum Plasma selbst nahezu keine Elektronen, sondern nur positiv geladene Ionen. Die Schicht expandiert und kollabiert im Rhythmus der angelegten Wechselspannung (13.56 MHz) unaufhörlich, wobei ein Zyklus etwa 74 Nanosekunden dauert. Bei der Expansion stößt die Randschicht ? wie ein Schläger beim Tennis den Ball ? Elektronen von der Elektrode weg. Diese gerichteten hochenergetischen Elektronen ionisieren das neutrale Gas und erzeugen somit das Plasma. Die hochenergetischen Elektronenstrahlen fliegen ballistisch ins Plasma. Bei extrem niedrigem Druck und entsprechend langer freier Wegstrecke treffen diese ?beams? auf einen Quartzzylinder (5 cm von der Elektrode entfernt). Dort wird der Strahl reflektiert. Trifft der reflektierte Strahl auf die Randschicht vor der Elektrode, wird er erneut reflektiert (Elektronen-Pingpong).

Theorien zur stochastischen Heizung bestätigt

Für den Nachweis maßen die Physiker die elektrischen Felder in der Randschicht mit Hilfe eines Lasersystems und berechneten sie durch ein Modell. Mittels phasenaufgelöster optischer Emissionsspektroskopie wurden hochenergetische Elektronen orts- und zeitaufgelöst detektiert. Parallel wurden der Strom zur Kammerwand und die Spannung über der Entladung gemessen. Mit einer Sonde wurde die Elektronenenergieverteilungsfunktion (EEDF) bestimmt. Durch Strommessungen konnten von RUB-Forschern entwickelte Theorien der nichtlinearen Elektronen-Resonanz-Heizung verifiziert werden. Insbesondere wurde mit Hilfe eines analytischen Modells gezeigt, dass die beobachteten Elektronenstrahlen zu dem gemessenen erhöhten Anteil energetischer Elektronen in der EEDF führen. Somit stellen diese Ergebnisse einen entscheidenden Beitrag auf dem Gebiet der stochastischen Heizung dar.

Titelaufnahme

Julian Schulze, B. G. Heil, D. Luggenhölscher, T. Mussenbrock, R. P. Brinkmann and U. Czarnetzki: Electron beams in asymmetric capacitively coupled radio frequency discharges at low pressures. In: Journal of Physics D: Applied Physics, 41 No 4 (21 February 2008) 042003 (5pp), bis 31.12.2009 frei verfügbar unter: http://www.iop.org/EJ/journal/-page=extra.highlights08/0022-3727

Weitere Informationen

Julian Schulze, Lehrstuhl Experimentalphysik V, insbesondere Plasma- und Atomphysik, der Ruhr-Universität Bochum, Tel. 0234/32-26034, E-Mail: fjschulze@hotmail.com

Redaktion: Meike Drießen

Dr. Josef König | idw
Weitere Informationen:
http://www.ruhr-uni-bochum.de/
http://www.iop.org/EJ/journal/-page=extra.highlights08/0022-3727

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Biophysik - Blitzlicht aus der Nanowelt
24.04.2018 | Ludwig-Maximilians-Universität München

nachricht Moleküle brillant beleuchtet
23.04.2018 | Max-Planck-Institut für Quantenoptik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: Innovatives 3D-Druckverfahren für die Raumfahrt

Auf der Hannover Messe 2018 präsentiert die Bundesanstalt für Materialforschung und -prüfung (BAM), wie Astronauten in Zukunft Werkzeug oder Ersatzteile per 3D-Druck in der Schwerelosigkeit selbst herstellen können. So können Gewicht und damit auch Transportkosten für Weltraummissionen deutlich reduziert werden. Besucherinnen und Besucher können das innovative additive Fertigungsverfahren auf der Messe live erleben.

Pulverbasierte additive Fertigung unter Schwerelosigkeit heißt das Projekt, bei dem ein Bauteil durch Aufbringen von Pulverschichten und selektivem...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: IWS-Ingenieure formen moderne Alu-Bauteile für zukünftige Flugzeuge

Mit Unterdruck zum Leichtbau-Flugzeug

Ingenieure des Fraunhofer-Instituts für Werkstoff- und Strahltechnik (IWS) in Dresden haben in Kooperation mit Industriepartnern ein innovatives Verfahren...

Im Focus: Moleküle brillant beleuchtet

Physiker des Labors für Attosekundenphysik, der Ludwig-Maximilians-Universität und des Max-Planck-Instituts für Quantenoptik haben eine leistungsstarke Lichtquelle entwickelt, die ultrakurze Pulse über einen Großteil des mittleren Infrarot-Wellenlängenbereichs generiert. Die Wissenschaftler versprechen sich von dieser Technologie eine Vielzahl von Anwendungen, unter anderem im Bereich der Krebsfrüherkennung.

Moleküle sind die Grundelemente des Lebens. Auch wir Menschen bestehen aus ihnen. Sie steuern unseren Biorhythmus, zeigen aber auch an, wenn dieser erkrankt...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

infernum-Tag 2018: Digitalisierung und Nachhaltigkeit

24.04.2018 | Veranstaltungen

Fraunhofer eröffnet Community zur Entwicklung von Anwendungen und Technologien für die Industrie 4.0

23.04.2018 | Veranstaltungen

Mars Sample Return – Wann kommen die ersten Gesteinsproben vom Roten Planeten?

23.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Von der Genexpression zur Mikrostruktur des Gehirns

24.04.2018 | Biowissenschaften Chemie

Bestrahlungserfolg bei Hirntumoren lässt sich mit kombinierter PET/MRT vorhersagen

24.04.2018 | Medizintechnik

RWI/ISL-Containerumschlag-Index auf hohem Niveau deutlich rückläufig

24.04.2018 | Wirtschaft Finanzen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics