Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Elektronen-Ping-Pong in der Nanowelt

26.04.2011
Einem internationalen Forscherteam gelingt am Max-Planck Institut für Quantenoptik erstmals die Kontrolle und Beobachtung stark beschleunigter Elektronen an Nanokugeln mit extrem kurzen und intensiven Laserpulsen. (Nature Physics, 24. April 2011).

Wenn starkes Laserlicht auf Elektronen in Nanoteilchen trifft, die aus einem Verbund von vielen Millionen Atomen bestehen, können Elektronen freigesetzt und stark beschleunigt werden. Einen solchen Effekt in Nanokugeln aus Quarz hat jetzt ein internationales Forscherteam im Labor für Attosekundenphysik (LAP) am Max-Planck Institut für Quantenoptik aufgezeichnet.


Mechanismus der Beschleunigung von Elektronen an Nanokugeln aus Glas. Das Laserfeld (rote Welle) führt zur Freisetzung von Elektronen (grüne Teilchen), die dann vom Laserfeld vom Nanoteilchen weg und anschließend wieder zurückbeschleunigt werden. Nach einem elastischen Stoß mit der Oberfläche der Nanokugel werden schließlich sehr hohe Energien für die freigesetzten Elektronen erreicht. Die Abbildung zeigt drei Momentaufnahmen der Beschleunigung (von links nach rechts): 1) die Elektronen werden zum Stillstand gebracht und kehren wieder zur Oberfläche zurück, 2) die Elektronen stoßen elastisch mit der Oberfläche zusammen und prallen ab und 3) die Elektronen werden sehr stark von der Nanokugel wegbeschleunigt. Bild: Christian Hackenberger/LMU


Verstärkte Nahfelder an einer Glas Nanokugel. Die Nahfelder auf der Polachse des Teilchens sind zeitabhängig dargestellt, wobei die Zeit, wie in der dargestellten Welle, von rechts unten nach links oben verläuft. Entlang der Polarisationsachse des Lasers (entlang der Wellenkämme und Täler) zeigen die Felder eine deutliche Asymmetrie in ihrer Amplitude. Diese Asymmetrie führt zu einem höheren Energiegewinn der Elektronen auf einer Seite des Nanoteilchens im Vergleich zur anderen. Im dargestellten Fall entstehen die schnellsten Elektronen durch die maximale Feldüberhöhung auf der Rückseite des Teilchens. Die Energie der Elektronen und ihre Emissionsrichtungen werden im Experiment bestimmt. Bild: Christian Hackenberger/LMU

Die Forscher beobachteten, wie sich im Laserlicht starke elektrische Felder (Nahfelder) in der Nähe der Nanoteilchen aufbauten und Elektronen freisetzten - die Nanoteilchen werden im Laserlicht ionisiert. Mit Hilfe der Nahfelder und kollektiver Wechselwirkungen der entstandenen Ladungen konnten freigesetzte Elektronen mit Licht soweit beschleunigt werden, dass sie die Grenzen der Beschleunigung, die an einzelnen Atomen bisher beobachtet wurde, weit überstiegen. Die genauen Bewegungen der Elektronen lassen sich präzise über das elektrische Feld des Laserlichtes steuern. Die neuen Erkenntnisse dieses durch Licht kontrollierten Prozesses könnten helfen, sehr energetische extreme, ultraviolette Strahlung (XUV) zu erzeugen. Durch die Experimente und ihre theoretische Modellierung, die die Wissenschaftler im Magazin „Nature Physics“ beschreiben, ergeben sich auch neue Perspektiven für die Entwicklung ultraschneller, lichtkontrollierter Nanoelektronik, die im Vergleich zu heutiger Elektronik um bis zu eine Million mal schneller arbeiten könnte.

Der Vorgang der Elektronenbeschleunigung erinnert an einen kurzen Ballwechsel beim Tischtennis. Aufschlag, Rückgabe und noch ein schneller Schlag, der zum Punktgewinn führt. So ähnlich geht es auch zu, wenn Elektronen in Nanopartikeln mit Lichtpulsen in Berührung kommen. Einem internationalen Team, angeführt von drei deutschen Gruppen um Prof. Matthias Kling vom Labor für Attosekundenphysik (LAP) am Max-Planck-Institut für Quantenoptik in Garching und der Ludwig-Maximilians Universität München, Prof. Eckart Rühl von der Freien Universität in Berlin und Prof. Thomas Fennel von der Universität Rostock ist nun die Beobachtung der Mechanismen und ihrer Auswirkungen eines solchen Ping-Pong-Spiels der Elektronen in Nanoteilchen unter der Einwirkung starker Laserlicht-Felder gelungen.

Die Forscher ließen hochintensive Lichtpulse, die rund fünf Femtosekunden dauerten, auf Nanoteilchen aus Siliziumdioxid (Quarzglas) im Größenbereich um 100 nm treffen (eine Femtosekunde ist ein Millionstel einer Milliardstel Sekunde). Die Laserpulse bestanden aus nur wenigen Wellenzügen. Die Nanoteilchen verfügten über rund 50 Millionen Atome. Durch die Laserpulse wurden Elektronen von den Nano-Partikeln innerhalb von Bruchteilen einer Femtosekunde freigesetzt und im Laserfeld beschleunigt. Die Elektronen bewegten sich dabei um weniger als einen Nanometer von der Oberfläche der Nanokugeln weg, wurden zurück zur Oberfläche beschleunigt und prallten dort elastisch ab (wie der Tischtennisball von dem Tischtennisschläger). Die Energie der Elektronen kann dabei sehr hohe Werte annehmen und entsprach im Experiment etwa dem 60ig-fachen der Energie eines Laserphotons bei ca. 700 nm (im roten Spektralbereich des Lichts).

Die Wissenschaftler konnten damit erstmals das Phänomen dieses direkten elastischen Rückstoßes in einem kollektiven Nanoverbund beobachten und detailliert aufzeichnen. Für ihre Experimente verwendeten die Forscher polarisiertes Licht. Bei polarisiertem Licht schwingen die Lichtwellen lediglich entlang einer Achse und nicht, wie bei normalem Licht, in alle Richtungen. „Intensive Strahlungspulse können die Nanopartikel verändern oder zerstören. Daher haben wir isolierte Nanopartikel in einem Strahl präpariert, so dass für jeden Laserpuls frische Nanopartikel verwendet wurden. Dies ist entscheidend für die Beobachtung der hochenergetischen Elektronen“, erläutert Eckart Rühl.

Die beschleunigten Elektronen verließen die Atome in unterschiedlichen Richtungen und mit unterschiedlichen Energien. Diese Flugbahnen zeichneten die Wissenschaftler in einem dreidimensionalen Bild auf, mit dem sie die Energien und die Emissionsrichtungen der Elektronen bestimmten. „Die Elektronen werden nicht nur durch das laserinduzierte Nahfeld beschleunigt, welches selbst schon deutlich stärker als das Laserfeld ist, sondern auch durch Wechselwirkungen mit anderen Elektronen, die aus dem Nanoteilchen ausgelöst werden“, beschreibt Matthias Kling das Experiment. Schließlich spielt auch die positive Aufladung der Nanopartikel-Oberfläche eine Rolle. Da sich alle Beiträge addieren, kann die Energie der Elektronen sehr hoch sein. „Der Vorgang ist komplex, zeigt aber, dass es in der Wechselwirkung von Nanoteilchen mit starken Laserfeldern noch sehr viel zu entdecken gibt“, ergänzt Kling.

Bei den Elektronenbewegungen können auch Pulse von extremem, ultraviolettem Licht entstehen, nämlich immer genau dann, wenn die Elektronen wieder auf die Oberfläche treffen, aber statt abzuprallen, absorbiert werden und dabei Licht abgeben. Extremes ultraviolettes Licht ist vor allem für die biologische und medizinische Forschung interessant.

„Nach unseren Erkenntnissen können über die Rekombination der Elektronen an den Nanoteilchen Energien der abgegebenen Photonen erreicht werden, die bis zu siebenfach über dem Limit liegen, das bisher für einzelne Atome beobachtet wurde.“, erklärt Thomas Fennel. Der Nachweis der kollektiven Beschleunigung der Elektronen mit Hilfe der Nanoteilchen bietet großes Potential. „Hieraus ergeben sich vielversprechende, neue Anwendungsmöglichkeiten in einer zukünftigen, lichtkontrollierten ultraschnellen Elektronik, die um bis zu eine Million mal schneller arbeiten könnte, als konventionelle Elektronik“, ist Matthias Kling überzeugt.

Text: Thorsten Naeser

Originalveröffentlichung:

Controlled near-field enhanced electron acceleration from dielectric nanospheres with intense few-cycle laser fields

Sergey Zherebtsov, Thomas Fennel, Jürgen Plenge, Egill Antonsson, Irina Znakovskaya, Adrian Wirth, Oliver Herrwerth, Frederik Süßmann, Christian Peltz, Izhar Ahmad, Sergei A. Trushin, Vladimir Pervak, Stefan Karsch1, Marc J.J. Vrakking, Burkhard Langer, Christina Graf, Mark I. Stockman, Ferenc Krausz, Eckart Rühl, Matthias F. Kling

Nature Physics, 24. April, doi: 10.1038/NPHYS1983

Weitere Informationen erhalten Sie von:

Prof. Dr. Matthias Kling
Max-Planck-Institut für Quantenoptik, Garching
Max Planck Research Group „Attosecond Imaging“
Tel.: +49 89 32905-234
Fax: +49 89 32905-649
E-Mail: matthias.kling@mpq.mpg.de
http://www.attoworld.de/kling-group/
Prof. Dr. Eckart Rühl
Physikalische und Theoretische Chemie, Institut für Chemie und Biochemie
Freie Universität Berlin
Tel.: 030-838 52396
Fax: 030-838 52717
E-mail: ruehl@chemie.fu-berlin.de
http://userpage.chemie.fu-berlin.de/~ruehl/
Prof. Dr. Thomas Fennel
Institut für Physik, Universität Rostock
Theoretical Cluster Physics Group
Tel.: +49 381 498 6815
Fax: +49 381 498 6802
E-Mail: thomas.fennel@uni-rostock.de
http://web.physik.uni-rostock.de/clustertheorie/

Christine Kortenbruck | Max-Planck-Institut
Weitere Informationen:
http://www.attoworld.de/kling-group/
http://userpage.chemie.fu-berlin.de/~ruehl/
http://web.physik.uni-rostock.de/clustertheorie/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Scharfe Röntgenblitze aus dem Atomkern
17.08.2017 | Max-Planck-Institut für Kernphysik, Heidelberg

nachricht Optische Technologien für schnellere Computer / „Licht“ mit Wespentaille
16.08.2017 | Universität Duisburg-Essen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie