Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wenn Elektronen sich paaren

31.03.2009
Wann finden Physiker den ersten Supraleiter, der seine verblüffenden Eigenschaften bereits bei Zimmertemperatur zeigt?

Noch scheint der Weg dahin weit zu sein. Eine Entdeckung, an der Forscher der Universität Würzburg beteiligt waren, zeigt jetzt immerhin die Richtung deutlich an.

Die so genannte "Supraleitung" gehört innerhalb der Physik zu den Forschungsgebieten, auf die sich schon seit etlichen Jahrzehnten große Hoffnungen richten. Der Effekt, dass bestimmte Materialien bei niedrigen Temperaturen Strom verlustfrei - das heißt: ohne Widerstand - transportieren können, macht diese für viele Anwendungen äußerst reizvoll: als unvorstellbar schnelle Computerchips, als Magnet in der Schwebebahn, als Speicher in der Stromproduktion, als verlustfreie Stromnetze.

Noch tritt Supraleitung erst bei vergleichsweise niedrigen Temperaturen auf: Minus 120 Grad Celsius ist der zurzeit höchste Wert, bei dem ein Stoff zum Supraleiter wird. Physiker erhoffen sich mehr: "Unser Traum ist es, ein Material zu finden, das bereits bei Zimmertemperatur die gewünschten Eigenschaften zeigt", sagt Werner Hanke.

Der Zufall hat die Suche bestimmt

Hanke war bis vor Kurzem Inhaber des Lehrstuhls für Theoretische Physik I und ist jetzt Senior-Professor an der Universität Würzburg; sein Spezialgebiet ist die theoretische Festkörperphysik. Im vergangenen Jahrzehnt hat er sich darauf konzentriert, den Mechanismus aufzuklären, welcher der Hochtemperatur-Supraleitung zugrunde liegt. Jetzt ist er dabei - gemeinsam mit Kollegen aus Deutschland und den USA - einen bedeutenden Schritt weitergekommen. Die Fachzeitschrift Nature Physics hat über dieses Ergebnis berichtet.

"Bisher war die Suche nach neuen Supraleitern mehr vom Zufall bestimmt als von einem exakten Wissen", sagt Werner Hanke. Um unter den mehr als 100 bekannten chemischen Elementen mit ihren schier unzähligen Kombinationsmöglichkeiten die meistversprechenden zu identifizieren, sei aber ein Prinzip nötig. "Dieses Prinzip hat uns bisher gefehlt. Jetzt wird es langsam sichtbar", sagt der Physiker.

Zwei Klassen von Supraleitern existieren

Zwei Klassen von Supraleitern haben Physiker bisher entdeckt: Die einen - schon seit etwa 100 Jahren bekannten "Tieftemperatur-Supraleiter" - leiten Strom erst bei Temperaturen nahe dem absoluten Nullpunkt von minus 273 Grad Celsius ohne Widerstand. Die anderen, erst vor 20 Jahren entdeckten "Hochtemperatur-Supraleiter" - in der Regel Materialien mit Keramik-ähnlichen Eigenschaften - schaffen dies bereits bei Werten um die minus 150 Grad Celsius. Der Unterschied ist von Bedeutung: "Zur Kühlung auf extrem tiefe Temperaturen benötigt man flüssiges Helium, das sehr teuer ist", sagt Hanke. Für die so genannten "Hochtemperatur-Supraleiter" hingegen reicht flüssiger Stickstoff - ein im Vergleich äußerst billiges Kühlmittel.

In beiden Fällen ist der verantwortliche Effekt jedoch der gleiche: Elektronen schließen sich zu Paaren zusammen und werden so in die Lage versetzt, widerstandslos ihre Reise durch den Leiter anzutreten. "Es ist, als würden alle Autos auf der Autobahn zu einem Zug gekoppelt. Weil alle mit derselben Geschwindigkeit fahren, gibt es keinen Stau, und sie kommen schnell zum Ziel", erklärt Hanke. Dazu müssen sich allerdings die Elektronen, die sich normalerweise wegen ihrer gleichen Ladung abstoßen, paarweise binden. Wie diese Paarung genau vonstatten geht, verstehen die Wissenschaftler in den Tieftemperatur-Supraleitern seit etwa 50 Jahren. In den Hochtemperatur-Leitern war der "Klebstoff", der die Elektronen zu Paaren formt, nicht bekannt. Genau hier setzt die Nature-Arbeit ein:

Elektronen wandern wie Kugeln auf einer Matratze

In einem gewöhnlichen Leiter wandern Elektronen durch das Kristallgitter, wenn eine Spannung angelegt wird, und bauen dadurch den Strom auf. Dabei prallen sie immer wieder auf die sehr viel größeren Ionen, werden abgelenkt und verlieren Energie. Das ist der Effekt, der sich hinter dem Begriff "Widerstand" verbirgt und der zu dem beträchtlichen Verlust zum Beispiel in Stromnetzen führt. Im Supraleiter sieht das anders aus: Dort bilden die Elektronen Paare, die sich sozusagen gegenseitig den Weg weisen. Ähnlich wie schwere Kugeln auf einer Matratze Mulden verursachen, verformen die Elektronen im Fall der Tieftemperatur-Supraleiter das regelmäßige Kristallgitter, das von den Ionen aufgebaut wird, oder, genauer gesagt: das Kraftfeld zwischen den Ionen, das entsteht, weil die negativen Elektronen die positiven Ionen anziehen. In die Vertiefung, die das eine Teilchen hinterlässt, fällt das zweite quasi automatisch hinein.

Magnetische Kräfte sind im Hochtemperatur-Supraleiter am Werk

Wie das Forscherteam in dem Nature-Artikel jetzt zeigen konnte, sind in den Hochtemperatur-Supraleitern ganz andere Kräfte, nämlich magnetische Kräfte für das Verschwinden des Widerstands verantwortlich. Diese magnetischen Kräfte beruhen auf dem so genannten Spin, also der Richtung, in der sich diese Teilchen um ihre eigene Achse drehen.

Solch einen Spin, den man sich wie einen winzig kleinen Magneten mit Nord- und Südpol vorstellen kann, besitzen auch die Ionen, die im Kristallgitter des Supraleiters an den Kreuzungspunkten sitzen. Ist die Richtung der Spins, beziehungsweise der kleinen Magneten, jeweils die gleiche, hält man einen Ferro-Magneten in der Hand; wechselt die Richtung von Ion zu Ion, ist das Material antiferromagnetisch - wie im Falle der Hochtemperatur-Supraleiter.

Zwei Leerstellen im Gitter bringen die Elektronenpaare in Schwung

Wie ein Schachbrett sehen demnach die einzelnen Ebenen aus, aus denen diese supraleitenden Kristalle bestehen: Die unterschiedlichen Richtungen der Magnete stehen dann für die weißen und schwarzen Felder. Bringen die Physiker in das normalerweise sehr regelmäßige magnetische Gitter dieser Materialien nun vereinzelt Atome anderer Elemente hinein, verändert das die schöne Ordnung geringfügig. In dem Supraleiter sind dann einzelne Plätze in diesem magnetischen Gitter unbesetzt, so dass benachbarte Elektronen mit ihrem Spin auf die freien Stellen springen können. "Das kostet allerdings viel Energie und ist für den Widerstand verantwortlich, denn die resultierende Anordnung, bei der Elektronen mit gleicher Magnet-Ausrichtung direkt nebeneinander liegen, ist energetisch ungünstig", sagt Hanke.

Das ändert sich jedoch schlagartig, wenn zwei Leerstellen nahe beieinander liegen und die auf diese Leerstellen springenden Elektronen sich "paaren": Störungen im Schachbrettmuster, also im magnetischen Gitter, die das erste Elektron hervorruft, werden dann von dem zweiten Elektron wieder rückgängig gemacht. Die Folge daraus: Zwei benachbarte Lücken - und somit auch die in sie hinein springenden Elektronen, die sich zu einem Paar formieren - können ohne eine Störung im magnetischen Schachbrett-Gitter zu hinterlassen beispielsweise nach rechts verschoben werden und auf diese Weise ohne Widerstand Ladung transportieren. Wenn sich schließlich sehr, sehr viele solcher sogenannter "Cooper-Paare" zusammentun und mit gleicher Geschwindigkeit bewegen, dann entsteht der Supraleiter mit seinen faszinierenden Eigenschaften.

Nur die größten Rechner bringen die erforderliche Leistung

Was sich in der Erklärung vergleichsweise einfach anhört, ist in der Überprüfung extrem aufwändig und bedarf der Unterstützung seitens der leistungsfähigsten Großrechner, die zurzeit auf dem Markt sind. "Schließlich geht es in diesem Fall nicht um einzelne Elektronenpaare", sagt Werner Hanke. "Hier treten 10 hoch 23 und mehr Teilchen miteinander in Wechselwirkung."

Bei der Simulation auf den größten Computern der Welt konnte Hanke gemeinsam mit Physikern der University of California und mit Kollegen vom Max-Planck-Institut in Stuttgart und in Dresden zeigen, dass tatsächlich die Spins der Elektronen für den "Klebstoff" sorgen, der sie zu Paaren bindet.

Nichts spricht gegen Supraleitung bei Zimmertemperatur

Was Hanke besonders freut, ist die Tatsache, dass die Physik nun über eine Formel verfügt, mit der sie zumindest annäherungsweise für bestimmte Stoffkombinationen die Temperatur berechnen kann, bei der aus einem regulären Leiter ein Supraleiter wird. Und vielleicht lässt sich damit ja auch der umgekehrte Weg gehen: Mit der Wunschtemperatur nach einer geeigneten Molekülkombination suchen.

Werner Hanke ist jedenfalls optimistisch, dass es nur noch eine Frage der Zeit ist, bis Physiker den ersten Supraleiter in der Hand halten, der bereits in der Nähe von Zimmertemperatur Strom ohne Widerstand leitet. Schließlich gebe es keinerlei Hinweis darauf, dass dieser Effekt, aus welchen Gründen auch immer, bei einer bestimmten Temperatur endet.

"Strength of the spin-fluctuation-mediated pairing interaction in a high-temperature superconductor". T. Dahm, V. Hinkov, S. V. Borisenko, A. A. Kordyuk, V. B. Zabolotnyy, J. Fink, B. Büchner, D. J. Scalapino, W. Hanke and B. Keimer. Nature Physics: doi: 10.1038/NPHYS1180

Kontakt:
Prof. Werner Hanke,
T: (0931) 31 85 71 4,
E-Mail: hanke@physik.uni-wuerzburg.de

Gunnar Bartsch | idw
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas
19.09.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern
15.09.2017 | Max-Planck-Institut für Quantenoptik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Drohnen sehen auch im Dunkeln

20.09.2017 | Informationstechnologie

Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen

20.09.2017 | Biowissenschaften Chemie

Frühwarnsystem für gefährliche Gase: TUHH-Forscher erreichen Meilenstein

20.09.2017 | Energie und Elektrotechnik