Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Elektronen – kalt beschleunigt

04.06.2013
Physiker am Max-Planck-Institut für Quantenoptik produzieren mit einem Laserbeschleuniger erstmals Elektronenpulse, deren Einzelteilchen fast dieselbe abstimmbare Energie haben.

Elektronen nahe der Lichtgeschwindigkeit sind schwer zu bändigende Genossen. Will man sie für physikalische Anwendungen an den Grenzen der Ultrakurzzeitphysik nutzbar machen, sollte eine große Anzahl von ihnen in extrem kurze Pulse mit einstellbarer Energie gepackt werden.


Ein Laserpuls (rot) trifft auf Heliumatome (blau), die aus einer Düse mit Überschallgeschwindigkeit entlassen werden. Ein sehr kompakter und kontrollierter Dichteunterschied (dunkelblauer Strahl) entsteht durch eine teilweise Abdeckung der Düse durch eine Rasierklinge. Exakt an diesem Dichteunterschied trifft der Laserpuls auf die Heliumatome, löst dort Elektronen heraus und beschleunigt sie fast bis aus Lichtgeschwindigkeit. Da die Elektronen alle am selben Ort und zudem zeitgleich von den Atomen gelöst werden, haben sie nahezu dieselbe Energie.

Einem Team um Dr. Laszlo Veisz und Prof. Stefan Karsch, beide Forschungsgruppenleiter im Labor für Attosekundenphysik (LAP) am Max-Planck-Institut für Quantenoptik (MPQ), ist dies nun mittels eines lasergetriebenen Beschleunigers erstmals gelungen. Sie erzeugten Elektronenpulse von wenigen Femtosekunden Dauer, deren enorme Anzahl von Teilchen alle über fast dieselbe, über einen weiten Bereich einstellbare, Energie verfügen.

Diese monoenergetischen Elektronenpakete können dazu dienen, ultrakurze Lichtblitze im extremen ultraviolett- oder sogar Röntgenbereich zu erzeugen, die wiederum vielseitige Werkzeuge zur Erforschung schneller Prozesse im Mikrokosmos sind. (Physical Review Letters, 02. Mai 2013).

Pulse aus Elektronen, die fast mit Lichtgeschwindigkeit fliegen und dabei auch noch vom Menschen kontrolliert werden, besitzen ein großes Potential für Anwendungen in der Medizin und der Erforschung des Mikrokosmos. Zu ihrer Erzeugung werden heute jedoch zumeist Hochfrequenz-Beschleunigeranlagen verwendet, die einerseits sehr groß und kostspielig sind, andererseits kurze Teilchenpulse nur mit sehr aufwendigen Tricks und unter großen Teilchenverlusten erzeugen können.

Teilchenschwärme mit einem Laser auf Lichtgeschwindigkeit zu beschleunigen, ist eine Methode, die diese Probleme teilweise vermeidet. Das Hauptproblem hierbei ist es allerdings, allen Teilchen in einem Puls eine einheitliche Energie mit auf die Reise zu geben und somit „kalte“ Pulse zu erzeugen. Damit könnte man die physikalischen Parameter noch besser kontrollieren und für Anwendungen nutzbar machen.

Ein konventioneller Hochfrequenz-Beschleuniger enthält immer eine Teilchenquelle, die die Teilchenzahl, Pulsdauer und Energieschärfe der Pakete bestimmt. Dazu verfügt er über eine feste Beschleunigungsstrecke, die die Energie der Teilchen vorgibt. In einem Laserbeschleuniger jedoch fehlt die Teilchenquelle. Die beschleunigten Teilchen werden zufällig über die gesamte Länge des Beschleunigers eingefangen. Dadurch wird ihre Energieverteilung relativ breit. Einem Team um Laszlo Veisz und Stefan Karsch vom Labor für Attosekundenphysik am MPQ, ist es nun gelungen, eine kontrollierbare Teilchenquelle in einen Laserbeschleuniger zu integrieren und damit Pulse aus Elektronen zu erzeugen, deren einzelne Teilchen nahezu dieselbe Energie besitzen.

Aus einer kleinen Düse entließen die Physiker Heliumatome mit Überschallgeschwindigkeit. Kurz über der Öffnung der Düse positionierten sie eine Rasierklinge so, dass sie einen Teil der Öffnung abschirmte. Wurden nun die Heliumatome aus der Düse entlassen, formten sie ausgehend von der Rasierklingenkante eine Schockwelle und damit ein Dichtesprung im Gasfluss. Exakt an diese Stelle fokussierten die Wissenschaftler einen extrem starken Laserpuls von rund 28 Femtosekunden Dauer (eine Femtosekunde ist ein Millionstel einer Milliardstel Sekunde).

Dieser Laserpuls erzeugte ein Plasmakanal, er trennte also Elektronen von ihren Kernen ab, beschleunigte dann die Elektronen innerhalb weniger 100 Mikrometer bis auf Lichtgeschwindigkeit und gab ihnen allen fast dieselbe Energie mit auf den Weg.

Entscheidend für die Ausformung eines monochromatischen Elektronenpulses ist die Tatsache, dass alle Elektronen ihre Reise genau an dieser Schockfront gestartet und damit bis zum Ende des Gasstahls die gleiche Beschleunigungsstrecke zurückgelegt haben, wodurch sie alle dieselbe Energie erhielten. Ohne die Schockfront würden unterschiedliche Elektronen an beliebiger Stelle im Beschleuniger starten und damit unterschiedliche Energien mitnehmen. „Durch die Position der Rasierklinge über der Düse können wir genau bestimmen wo sich der Dichteunterschied der Heliumatome ausbildet und damit beeinflussen, wie lang die Beschleunigungstrecke ist und welche Energie wir den herausgelösten Elektronen mitgeben“, erklärt Laszlo Veisz.

Perfekt kontrollierte, ultrakurze Elektronenpulse könnten genutzt werden um wiederum Lichtblitze mit wenigen Femtosekunden Dauer bis in den Röntgenbereich zu erzeugen. Mit ihnen ist man dann z.B. in der Lage, schnelle Prozesse im Mikrokosmos zu „fotografieren“. Ebenso bieten sich medizinische Anwendungen an: Kompakte und preiswerte, gut kontrollierbare Laser-Teilchenbeschleuniger mit hoher Strahlqualität könnten in Zukunft dafür sorgen, dass neue Röntgentechniken mit erheblich verminderter Strahlenbelastung für viele Patienten zur Diagnose von Krankheiten zur Verfügung stehen. [Thorsten Naeser]

Originalpublikation:
A. Buck, J. Wenz, J. Xu, K. Khrennikov, K. Schmid, M. Heigoldt, J. M. Mikhailova, M. Geissler, B. Shen, F. Krausz, S. Karsch, and L. Veisz

Shock-Front Injector for High-Quality Laser-Plasma Acceleration
Physical Review Letters, 2. Mai 2013
Doi: 10.1103/PhysRevLett.110.185006

Weitere Informationen erhalten Sie von:

Prof. Dr. Stefan Karsch
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Str. 1, 85748 Garching
Tel.: +49 (0)89 / 32 905-323
E-Mail: stefan.karsch@mpq.mpg.de

Dr. Laszlo Veisz
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Str. 1, 85748 Garching
Tel.: +49 (0)89 / 32 905-233
E-Mail: laszlo.veisz@mpq.mpg.de

Dr. Olivia Meyer-Streng
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Quantenoptik, Garching
Tel.: +49 (0) 89 / 32 905 -213
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Weitere Informationen:
http://www.mpq.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Schnell wachsende Galaxien könnten kosmisches Rätsel lösen – zeigen früheste Verschmelzung
26.05.2017 | Max-Planck-Institut für Astronomie

nachricht 3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind
24.05.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

Staphylococcus aureus ist aufgrund häufiger Resistenzen gegenüber vielen Antibiotika ein gefürchteter Erreger (MRSA) insbesondere bei Krankenhaus-Infektionen. Forscher des Paul-Ehrlich-Instituts haben immunologische Prozesse identifiziert, die eine erfolgreiche körpereigene, gegen den Erreger gerichtete Abwehr verhindern. Die Forscher konnten zeigen, dass sich durch Übertragung von Protein oder Boten-RNA (mRNA, messenger RNA) des Erregers auf Immunzellen die Immunantwort in Richtung einer aktiven Erregerabwehr verschieben lässt. Dies könnte für die Entwicklung eines wirksamen Impfstoffs bedeutsam sein. Darüber berichtet PLOS Pathogens in seiner Online-Ausgabe vom 25.05.2017.

Staphylococcus aureus (S. aureus) ist ein Bakterium, das bei weit über der Hälfte der Erwachsenen Haut und Schleimhäute besiedelt und dabei normalerweise keine...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy