Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Elektronen – kalt beschleunigt

04.06.2013
Physiker am Max-Planck-Institut für Quantenoptik produzieren mit einem Laserbeschleuniger erstmals Elektronenpulse, deren Einzelteilchen fast dieselbe abstimmbare Energie haben.

Elektronen nahe der Lichtgeschwindigkeit sind schwer zu bändigende Genossen. Will man sie für physikalische Anwendungen an den Grenzen der Ultrakurzzeitphysik nutzbar machen, sollte eine große Anzahl von ihnen in extrem kurze Pulse mit einstellbarer Energie gepackt werden.


Ein Laserpuls (rot) trifft auf Heliumatome (blau), die aus einer Düse mit Überschallgeschwindigkeit entlassen werden. Ein sehr kompakter und kontrollierter Dichteunterschied (dunkelblauer Strahl) entsteht durch eine teilweise Abdeckung der Düse durch eine Rasierklinge. Exakt an diesem Dichteunterschied trifft der Laserpuls auf die Heliumatome, löst dort Elektronen heraus und beschleunigt sie fast bis aus Lichtgeschwindigkeit. Da die Elektronen alle am selben Ort und zudem zeitgleich von den Atomen gelöst werden, haben sie nahezu dieselbe Energie.

Einem Team um Dr. Laszlo Veisz und Prof. Stefan Karsch, beide Forschungsgruppenleiter im Labor für Attosekundenphysik (LAP) am Max-Planck-Institut für Quantenoptik (MPQ), ist dies nun mittels eines lasergetriebenen Beschleunigers erstmals gelungen. Sie erzeugten Elektronenpulse von wenigen Femtosekunden Dauer, deren enorme Anzahl von Teilchen alle über fast dieselbe, über einen weiten Bereich einstellbare, Energie verfügen.

Diese monoenergetischen Elektronenpakete können dazu dienen, ultrakurze Lichtblitze im extremen ultraviolett- oder sogar Röntgenbereich zu erzeugen, die wiederum vielseitige Werkzeuge zur Erforschung schneller Prozesse im Mikrokosmos sind. (Physical Review Letters, 02. Mai 2013).

Pulse aus Elektronen, die fast mit Lichtgeschwindigkeit fliegen und dabei auch noch vom Menschen kontrolliert werden, besitzen ein großes Potential für Anwendungen in der Medizin und der Erforschung des Mikrokosmos. Zu ihrer Erzeugung werden heute jedoch zumeist Hochfrequenz-Beschleunigeranlagen verwendet, die einerseits sehr groß und kostspielig sind, andererseits kurze Teilchenpulse nur mit sehr aufwendigen Tricks und unter großen Teilchenverlusten erzeugen können.

Teilchenschwärme mit einem Laser auf Lichtgeschwindigkeit zu beschleunigen, ist eine Methode, die diese Probleme teilweise vermeidet. Das Hauptproblem hierbei ist es allerdings, allen Teilchen in einem Puls eine einheitliche Energie mit auf die Reise zu geben und somit „kalte“ Pulse zu erzeugen. Damit könnte man die physikalischen Parameter noch besser kontrollieren und für Anwendungen nutzbar machen.

Ein konventioneller Hochfrequenz-Beschleuniger enthält immer eine Teilchenquelle, die die Teilchenzahl, Pulsdauer und Energieschärfe der Pakete bestimmt. Dazu verfügt er über eine feste Beschleunigungsstrecke, die die Energie der Teilchen vorgibt. In einem Laserbeschleuniger jedoch fehlt die Teilchenquelle. Die beschleunigten Teilchen werden zufällig über die gesamte Länge des Beschleunigers eingefangen. Dadurch wird ihre Energieverteilung relativ breit. Einem Team um Laszlo Veisz und Stefan Karsch vom Labor für Attosekundenphysik am MPQ, ist es nun gelungen, eine kontrollierbare Teilchenquelle in einen Laserbeschleuniger zu integrieren und damit Pulse aus Elektronen zu erzeugen, deren einzelne Teilchen nahezu dieselbe Energie besitzen.

Aus einer kleinen Düse entließen die Physiker Heliumatome mit Überschallgeschwindigkeit. Kurz über der Öffnung der Düse positionierten sie eine Rasierklinge so, dass sie einen Teil der Öffnung abschirmte. Wurden nun die Heliumatome aus der Düse entlassen, formten sie ausgehend von der Rasierklingenkante eine Schockwelle und damit ein Dichtesprung im Gasfluss. Exakt an diese Stelle fokussierten die Wissenschaftler einen extrem starken Laserpuls von rund 28 Femtosekunden Dauer (eine Femtosekunde ist ein Millionstel einer Milliardstel Sekunde).

Dieser Laserpuls erzeugte ein Plasmakanal, er trennte also Elektronen von ihren Kernen ab, beschleunigte dann die Elektronen innerhalb weniger 100 Mikrometer bis auf Lichtgeschwindigkeit und gab ihnen allen fast dieselbe Energie mit auf den Weg.

Entscheidend für die Ausformung eines monochromatischen Elektronenpulses ist die Tatsache, dass alle Elektronen ihre Reise genau an dieser Schockfront gestartet und damit bis zum Ende des Gasstahls die gleiche Beschleunigungsstrecke zurückgelegt haben, wodurch sie alle dieselbe Energie erhielten. Ohne die Schockfront würden unterschiedliche Elektronen an beliebiger Stelle im Beschleuniger starten und damit unterschiedliche Energien mitnehmen. „Durch die Position der Rasierklinge über der Düse können wir genau bestimmen wo sich der Dichteunterschied der Heliumatome ausbildet und damit beeinflussen, wie lang die Beschleunigungstrecke ist und welche Energie wir den herausgelösten Elektronen mitgeben“, erklärt Laszlo Veisz.

Perfekt kontrollierte, ultrakurze Elektronenpulse könnten genutzt werden um wiederum Lichtblitze mit wenigen Femtosekunden Dauer bis in den Röntgenbereich zu erzeugen. Mit ihnen ist man dann z.B. in der Lage, schnelle Prozesse im Mikrokosmos zu „fotografieren“. Ebenso bieten sich medizinische Anwendungen an: Kompakte und preiswerte, gut kontrollierbare Laser-Teilchenbeschleuniger mit hoher Strahlqualität könnten in Zukunft dafür sorgen, dass neue Röntgentechniken mit erheblich verminderter Strahlenbelastung für viele Patienten zur Diagnose von Krankheiten zur Verfügung stehen. [Thorsten Naeser]

Originalpublikation:
A. Buck, J. Wenz, J. Xu, K. Khrennikov, K. Schmid, M. Heigoldt, J. M. Mikhailova, M. Geissler, B. Shen, F. Krausz, S. Karsch, and L. Veisz

Shock-Front Injector for High-Quality Laser-Plasma Acceleration
Physical Review Letters, 2. Mai 2013
Doi: 10.1103/PhysRevLett.110.185006

Weitere Informationen erhalten Sie von:

Prof. Dr. Stefan Karsch
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Str. 1, 85748 Garching
Tel.: +49 (0)89 / 32 905-323
E-Mail: stefan.karsch@mpq.mpg.de

Dr. Laszlo Veisz
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Str. 1, 85748 Garching
Tel.: +49 (0)89 / 32 905-233
E-Mail: laszlo.veisz@mpq.mpg.de

Dr. Olivia Meyer-Streng
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Quantenoptik, Garching
Tel.: +49 (0) 89 / 32 905 -213
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Weitere Informationen:
http://www.mpq.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Planeten außerhalb unseres Sonnensystems: Bayreuther Forscher dringen tief ins Weltall vor
23.02.2017 | Universität Bayreuth

nachricht Kühler Zwerg und die sieben Planeten
23.02.2017 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: „Vernetzte Autonome Systeme“ von acatech und DFKI auf der CeBIT

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für Künstliche Intelligenz (DFKI) in Kooperation mit der Deutschen Messe AG vernetzte Autonome Systeme. In Halle 12 am Stand B 63 erwarten die Besucherinnen und Besucher unter anderem Roboter, die Hand in Hand mit Menschen zusammenarbeiten oder die selbstständig gefährliche Umgebungen erkunden.

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für...

Im Focus: Kühler Zwerg und die sieben Planeten

Erdgroße Planeten mit gemäßigtem Klima in System mit ungewöhnlich vielen Planeten entdeckt

In einer Entfernung von nur 40 Lichtjahren haben Astronomen ein System aus sieben erdgroßen Planeten entdeckt. Alle Planeten wurden unter Verwendung von boden-...

Im Focus: Mehr Sicherheit für Flugzeuge

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem totalen Triebwerksausfall zum Einsatz kommt, um den Piloten ein sicheres Gleiten zu einem Notlandeplatz zu ermöglichen, und ein Assistenzsystem für Segelflieger, das ihnen das Erreichen größerer Höhen erleichtert. Präsentiert werden sie von Prof. Dr.-Ing. Wolfram Schiffmann auf der Internationalen Fachmesse für Allgemeine Luftfahrt AERO vom 5. bis 8. April in Friedrichshafen.

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem...

Im Focus: HIGH-TOOL unterstützt Verkehrsplanung in Europa

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt sich bewerten, wie verkehrspolitische Maßnahmen langfristig auf Wirtschaft, Gesellschaft und Umwelt wirken. HIGH-TOOL ist ein frei zugängliches Modell mit Modulen für Demografie, Wirtschaft und Ressourcen, Fahrzeugbestand, Nachfrage im Personen- und Güterverkehr sowie Umwelt und Sicherheit. An dem nun erfolgreich abgeschlossenen EU-Projekt unter der Koordination des KIT waren acht Partner aus fünf Ländern beteiligt.

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt...

Im Focus: Zinn in der Photodiode: nächster Schritt zur optischen On-Chip-Datenübertragung

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium allein – die stoffliche Basis der Chip-Produktion – sind als Lichtquelle kaum geeignet. Jülicher Physiker haben nun gemeinsam mit internationalen Partnern eine Diode vorgestellt, die neben Silizium und Germanium zusätzlich Zinn enthält, um die optischen Eigenschaften zu verbessern. Das Besondere daran: Da alle Elemente der vierten Hauptgruppe angehören, sind sie mit der bestehenden Silizium-Technologie voll kompatibel.

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Aufbruch: Forschungsmethoden in einer personalisierten Medizin

24.02.2017 | Veranstaltungen

Österreich erzeugt erstmals Erdgas aus Sonnen- und Windenergie

24.02.2017 | Veranstaltungen

Big Data Centrum Ostbayern-Südböhmen startet Veranstaltungsreihe

23.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fraunhofer HHI auf dem Mobile World Congress mit VR- und 5G-Technologien

24.02.2017 | Messenachrichten

MWC 2017: 5G-Hauptstadt Berlin

24.02.2017 | Messenachrichten

Auf der molekularen Streckbank

24.02.2017 | Biowissenschaften Chemie