Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Elektronen – kalt beschleunigt

04.06.2013
Physiker am Max-Planck-Institut für Quantenoptik produzieren mit einem Laserbeschleuniger erstmals Elektronenpulse, deren Einzelteilchen fast dieselbe abstimmbare Energie haben.

Elektronen nahe der Lichtgeschwindigkeit sind schwer zu bändigende Genossen. Will man sie für physikalische Anwendungen an den Grenzen der Ultrakurzzeitphysik nutzbar machen, sollte eine große Anzahl von ihnen in extrem kurze Pulse mit einstellbarer Energie gepackt werden.


Ein Laserpuls (rot) trifft auf Heliumatome (blau), die aus einer Düse mit Überschallgeschwindigkeit entlassen werden. Ein sehr kompakter und kontrollierter Dichteunterschied (dunkelblauer Strahl) entsteht durch eine teilweise Abdeckung der Düse durch eine Rasierklinge. Exakt an diesem Dichteunterschied trifft der Laserpuls auf die Heliumatome, löst dort Elektronen heraus und beschleunigt sie fast bis aus Lichtgeschwindigkeit. Da die Elektronen alle am selben Ort und zudem zeitgleich von den Atomen gelöst werden, haben sie nahezu dieselbe Energie.

Einem Team um Dr. Laszlo Veisz und Prof. Stefan Karsch, beide Forschungsgruppenleiter im Labor für Attosekundenphysik (LAP) am Max-Planck-Institut für Quantenoptik (MPQ), ist dies nun mittels eines lasergetriebenen Beschleunigers erstmals gelungen. Sie erzeugten Elektronenpulse von wenigen Femtosekunden Dauer, deren enorme Anzahl von Teilchen alle über fast dieselbe, über einen weiten Bereich einstellbare, Energie verfügen.

Diese monoenergetischen Elektronenpakete können dazu dienen, ultrakurze Lichtblitze im extremen ultraviolett- oder sogar Röntgenbereich zu erzeugen, die wiederum vielseitige Werkzeuge zur Erforschung schneller Prozesse im Mikrokosmos sind. (Physical Review Letters, 02. Mai 2013).

Pulse aus Elektronen, die fast mit Lichtgeschwindigkeit fliegen und dabei auch noch vom Menschen kontrolliert werden, besitzen ein großes Potential für Anwendungen in der Medizin und der Erforschung des Mikrokosmos. Zu ihrer Erzeugung werden heute jedoch zumeist Hochfrequenz-Beschleunigeranlagen verwendet, die einerseits sehr groß und kostspielig sind, andererseits kurze Teilchenpulse nur mit sehr aufwendigen Tricks und unter großen Teilchenverlusten erzeugen können.

Teilchenschwärme mit einem Laser auf Lichtgeschwindigkeit zu beschleunigen, ist eine Methode, die diese Probleme teilweise vermeidet. Das Hauptproblem hierbei ist es allerdings, allen Teilchen in einem Puls eine einheitliche Energie mit auf die Reise zu geben und somit „kalte“ Pulse zu erzeugen. Damit könnte man die physikalischen Parameter noch besser kontrollieren und für Anwendungen nutzbar machen.

Ein konventioneller Hochfrequenz-Beschleuniger enthält immer eine Teilchenquelle, die die Teilchenzahl, Pulsdauer und Energieschärfe der Pakete bestimmt. Dazu verfügt er über eine feste Beschleunigungsstrecke, die die Energie der Teilchen vorgibt. In einem Laserbeschleuniger jedoch fehlt die Teilchenquelle. Die beschleunigten Teilchen werden zufällig über die gesamte Länge des Beschleunigers eingefangen. Dadurch wird ihre Energieverteilung relativ breit. Einem Team um Laszlo Veisz und Stefan Karsch vom Labor für Attosekundenphysik am MPQ, ist es nun gelungen, eine kontrollierbare Teilchenquelle in einen Laserbeschleuniger zu integrieren und damit Pulse aus Elektronen zu erzeugen, deren einzelne Teilchen nahezu dieselbe Energie besitzen.

Aus einer kleinen Düse entließen die Physiker Heliumatome mit Überschallgeschwindigkeit. Kurz über der Öffnung der Düse positionierten sie eine Rasierklinge so, dass sie einen Teil der Öffnung abschirmte. Wurden nun die Heliumatome aus der Düse entlassen, formten sie ausgehend von der Rasierklingenkante eine Schockwelle und damit ein Dichtesprung im Gasfluss. Exakt an diese Stelle fokussierten die Wissenschaftler einen extrem starken Laserpuls von rund 28 Femtosekunden Dauer (eine Femtosekunde ist ein Millionstel einer Milliardstel Sekunde).

Dieser Laserpuls erzeugte ein Plasmakanal, er trennte also Elektronen von ihren Kernen ab, beschleunigte dann die Elektronen innerhalb weniger 100 Mikrometer bis auf Lichtgeschwindigkeit und gab ihnen allen fast dieselbe Energie mit auf den Weg.

Entscheidend für die Ausformung eines monochromatischen Elektronenpulses ist die Tatsache, dass alle Elektronen ihre Reise genau an dieser Schockfront gestartet und damit bis zum Ende des Gasstahls die gleiche Beschleunigungsstrecke zurückgelegt haben, wodurch sie alle dieselbe Energie erhielten. Ohne die Schockfront würden unterschiedliche Elektronen an beliebiger Stelle im Beschleuniger starten und damit unterschiedliche Energien mitnehmen. „Durch die Position der Rasierklinge über der Düse können wir genau bestimmen wo sich der Dichteunterschied der Heliumatome ausbildet und damit beeinflussen, wie lang die Beschleunigungstrecke ist und welche Energie wir den herausgelösten Elektronen mitgeben“, erklärt Laszlo Veisz.

Perfekt kontrollierte, ultrakurze Elektronenpulse könnten genutzt werden um wiederum Lichtblitze mit wenigen Femtosekunden Dauer bis in den Röntgenbereich zu erzeugen. Mit ihnen ist man dann z.B. in der Lage, schnelle Prozesse im Mikrokosmos zu „fotografieren“. Ebenso bieten sich medizinische Anwendungen an: Kompakte und preiswerte, gut kontrollierbare Laser-Teilchenbeschleuniger mit hoher Strahlqualität könnten in Zukunft dafür sorgen, dass neue Röntgentechniken mit erheblich verminderter Strahlenbelastung für viele Patienten zur Diagnose von Krankheiten zur Verfügung stehen. [Thorsten Naeser]

Originalpublikation:
A. Buck, J. Wenz, J. Xu, K. Khrennikov, K. Schmid, M. Heigoldt, J. M. Mikhailova, M. Geissler, B. Shen, F. Krausz, S. Karsch, and L. Veisz

Shock-Front Injector for High-Quality Laser-Plasma Acceleration
Physical Review Letters, 2. Mai 2013
Doi: 10.1103/PhysRevLett.110.185006

Weitere Informationen erhalten Sie von:

Prof. Dr. Stefan Karsch
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Str. 1, 85748 Garching
Tel.: +49 (0)89 / 32 905-323
E-Mail: stefan.karsch@mpq.mpg.de

Dr. Laszlo Veisz
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Str. 1, 85748 Garching
Tel.: +49 (0)89 / 32 905-233
E-Mail: laszlo.veisz@mpq.mpg.de

Dr. Olivia Meyer-Streng
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Quantenoptik, Garching
Tel.: +49 (0) 89 / 32 905 -213
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Weitere Informationen:
http://www.mpq.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht APEX wirft einen Blick ins Herz der Finsternis
25.05.2018 | Max-Planck-Institut für Radioastronomie

nachricht Matrix-Theorie als Ursprung von Raumzeit und Kosmologie
23.05.2018 | Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Starke IT-Sicherheit für das Auto der Zukunft – Forschungsverbund entwickelt neue Ansätze

Je mehr die Elektronik Autos lenkt, beschleunigt und bremst, desto wichtiger wird der Schutz vor Cyber-Angriffen. Deshalb erarbeiten 15 Partner aus Industrie und Wissenschaft in den kommenden drei Jahren neue Ansätze für die IT-Sicherheit im selbstfahrenden Auto. Das Verbundvorhaben unter dem Namen „Security For Connected, Autonomous Cars (SecForCARs) wird durch das Bundesministerium für Bildung und Forschung mit 7,2 Millionen Euro gefördert. Infineon leitet das Projekt.

Bereits heute bieten Fahrzeuge vielfältige Kommunikationsschnittstellen und immer mehr automatisierte Fahrfunktionen, wie beispielsweise Abstands- und...

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Mit Hilfe molekularer Schalter lassen sich künftig neuartige Bauelemente entwickeln

Einem Forscherteam unter Führung von Physikern der Technischen Universität München (TUM) ist es gelungen, spezielle Moleküle mit einer angelegten Spannung zwischen zwei strukturell unterschiedlichen Zuständen hin und her zu schalten. Derartige Nano-Schalter könnten Basis für neuartige Bauelemente sein, die auf Silizium basierende Komponenten durch organische Moleküle ersetzen.

Die Entwicklung neuer elektronischer Technologien fordert eine ständige Verkleinerung funktioneller Komponenten. Physikern der TU München ist es im Rahmen...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: GRACE Follow-On erfolgreich gestartet: Das Satelliten-Tandem dokumentiert den globalen Wandel

Die Satellitenmission GRACE-FO ist gestartet. Am 22. Mai um 21.47 Uhr (MESZ) hoben die beiden Satelliten des GFZ und der NASA an Bord einer Falcon-9-Rakete von der Vandenberg Air Force Base (Kalifornien) ab und wurden in eine polare Umlaufbahn gebracht. Dort nehmen sie in den kommenden Monaten ihre endgültige Position ein. Die NASA meldete 30 Minuten später, dass der Kontakt zu den Satelliten in ihrem Zielorbit erfolgreich hergestellt wurde. GRACE Follow-On wird das Erdschwerefeld und dessen räumliche und zeitliche Variationen sehr genau vermessen. Sie ermöglicht damit präzise Aussagen zum globalen Wandel, insbesondere zu Änderungen im Wasserhaushalt, etwa dem Verlust von Eismassen.

Potsdam, 22. Mai 2018: Die deutsch-amerikanische Satellitenmission GRACE-FO (Gravity Recovery And Climate Experiment Follow On) ist erfolgreich gestartet. Am...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Im Fokus: Klimaangepasste Pflanzen

25.05.2018 | Veranstaltungen

Größter Astronomie-Kongress kommt nach Wien

24.05.2018 | Veranstaltungen

22. Business Forum Qualität: Vom Smart Device bis zum Digital Twin

22.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Berufsausbildung mit Zukunft

25.05.2018 | Unternehmensmeldung

Untersuchung der Zellmembran: Forscher entwickeln Stoff, der wichtigen Membranbestandteil nachahmt

25.05.2018 | Interdisziplinäre Forschung

Starke IT-Sicherheit für das Auto der Zukunft – Forschungsverbund entwickelt neue Ansätze

25.05.2018 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics