Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Elektronen und Gitterschwingungen – ein starkes Team im Nanokosmos

05.08.2011
Die Halbleiterelektronik beruht auf der Erzeugung, Steuerung und Verstärkung elektrischer Ströme in Bauelementen wie dem Transistor.

Träger des elektrischen Stroms sind frei bewegliche Elektronen, die mit hoher Geschwindigkeit durch das Kristallgitter des Halbleiters wandern. Dabei verlieren sie einen Teil ihrer Bewegungsenergie, indem sie die Atome des Kristallgitters in Schwingungen versetzen.

In Halbleitern wie Galliumarsenid werden die positiv und negativ geladenen Ionen des Kristallgitters ausgelenkt und schwingen mit einer extrem kurzen Periodendauer von 100 Femtosekunden (1 fs = 10-15 s = 1 Milliardstel einer Millionstel Sekunde) gegeneinander. Im Mikrokosmos der Elektronen und Ionen ist die Schwingungsbewegung quantisiert. Das bedeutet, dass die Energie dieser Schwingung nur ein ganzzahliges Vielfaches eines Schwingungsquants, eines sog. Phonons, sein kann. Bei der Wechselwirkung eines Elektrons mit dem Kristallgitter, der sog. Elektron-Phonon-Wechselwirkung, werden Energiepakete in Form einzelner Schwingungsquanten übertragen.

Wie Forscher des Berliner Max-Born-Instituts für Nichtlineare Optik und Kurzzeitspektroskopie in der neuesten Ausgabe der Fachzeitschrift Physical Review Letters berichten, hängt die Stärke der Elektron-Phonon-Wechselwirkung empfindlich von der Größe des Elektrons, d.h. von der räumlichen Ausdehnung seiner Ladungswolke ab. Experimente im Zeitbereich der Phonon-Schwingungsperiode zeigen, dass für eine reduzierte Ausdehnung der Elektronenwolke eine bis zu 50fach verstärkte Wechselwirkung auftritt. Hierdurch können die Bewegungen der Elektronen und der Ionen so stark aneinander gekoppelt werden, dass die Einzelbewegungen nicht mehr erkennbar sind. Elektron und Phonon bilden ein neues Quasiteilchen, ein Polaron.

Um dieses Phänomen sichtbar zu machen, verwendeten die Wissenschaftler Nanostrukturen aus Galliumarsenid und Galliumaluminiumarsenid, in denen die Energien der Elektronen und der Ionenbewegung aneinander angepasst waren. Die Kopplung der Bewegungen wurde mit einem neuen optischen Verfahren sichtbar gemacht. Das System wird durch mehrere ultrakurze Lichtimpulse im Infraroten angeregt und das von den bewegten Ladungen abgestrahlte Lichtfeld wird in Echtzeit gemessen. Die Messungen ergeben sog. zweidimensionale nichtlineare Spektren (s. Abb.), in denen gekoppelte optische Übergänge getrennt erscheinen und aus denen sich die Kopplungsstärke zwischen Elektronen und Phononen ableiten lässt. Aus der Auswertung der Messdaten ergibt sich die Ausdehnung der Elektronen-Ladungswolke, die nur 3-4 Nanometer (1 Nanometer = 10-9 m = 1 Milliardstel Meter) beträgt. Darüber hinaus beweist die neue Methode erstmals den starken Einfluss der Elektron-Phonon Kopplung auf die optischen Spektren des Halbleiters. Dies bietet interessante Perspektiven für die Entwicklung optoelektronischer Bauelemente mit maßgeschneiderten optischen und elektrischen Eigenschaften.

Originalveröffentlichungen: W. Kuehn et al., Phys. Rev. Lett. 107, 067401 (2011); J. Phys. Chem. B 115, 5448 (2011).

Kontakt:
K. Reimann, M. Wörner, T. Elsässer, Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Tel.: 030 6392 1470, reimann@mbi-berlin.de, woerner@mbi-berlin.de

Christine Vollgraf | idw
Weitere Informationen:
http://www.mbi-berlin.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Atome rennen sehen - Phasenübergang live beobachtet
30.03.2017 | Universität Duisburg-Essen

nachricht Flipper auf atomarem Niveau
30.03.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atome rennen sehen - Phasenübergang live beobachtet

Ein Wimpernschlag ist unendlich lang dagegen – innerhalb von 350 Billiardsteln einer Sekunde arrangieren sich die Atome neu. Das renommierte Fachmagazin Nature berichtet in seiner aktuellen Ausgabe*: Wissenschaftler vom Center for Nanointegration (CENIDE) der Universität Duisburg-Essen (UDE) haben die Bewegungen eines eindimensionalen Materials erstmals live verfolgen können. Dazu arbeiteten sie mit Kollegen der Universität Paderborn zusammen. Die Forscher fanden heraus, dass die Beschleunigung der Atome jeden Porsche stehenlässt.

Egal wie klein sie sind, die uns im Alltag umgebenden Dinge sind dreidimensional: Salzkristalle, Pollen, Staub. Selbst Alufolie hat eine gewisse Dicke. Das...

Im Focus: Kleinstmagnete für zukünftige Datenspeicher

Ein internationales Forscherteam unter der Leitung von Chemikern der ETH Zürich hat eine neue Methode entwickelt, um eine Oberfläche mit einzelnen magnetisierbaren Atomen zu bestücken. Interessant ist dies insbesondere für die Entwicklung neuartiger winziger Datenträger.

Die Idee ist faszinierend: Auf kleinstem Platz könnten riesige Datenmengen gespeichert werden, wenn man für eine Informationseinheit (in der binären...

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Nierentransplantationen: Weisse Blutzellen kontrollieren Virusvermehrung

30.03.2017 | Biowissenschaften Chemie

Zuckerrübenschnitzel: der neue Rohstoff für Werkstoffe?

30.03.2017 | Materialwissenschaften

Integrating Light – Your Partner LZH: Das LZH auf der Hannover Messe 2017

30.03.2017 | HANNOVER MESSE