Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Elektronen gehen nicht immer den einfachsten Weg

16.03.2012
Bei der Ionisation in einem starken Laserfeld wird aus einem Molekül ein Elektron herausgelöst. Bislang gingen Physiker davon aus, dass es sich dabei um das am schwächsten gebundene Elektron im Molekül handelt.

Eine Forschergruppe hat nun in einem Experiment nachgewiesen, dass auch stärker gebundene Elektronen durch die Ionisation in einem starken Laserfeld freigesetzt werden.

Dieses neue Verständnis bringt nicht nur die Attosekundenforschung voran, sondern Forscher kommen damit auch dem Ziel näher, chemische Prozesse zu steuern. Über diese Ergebnisse berichtet die Forschergruppe im Fachblatt Science vom 16. März 2012.

In einem Molekül bewegen sich die Elektronen in verschiedenen Orbitalen, wobei sich in jedem Orbital höchstens zwei Elektronen aufhalten können. Die Orbitale haben unterschiedliche Energieniveaus. Für das höchste besetzte Orbital ist die geringste Energie nötig, um ein Elektron herauszulösen. Daher liegt es nahe, dass sich bei der Ionisation ein Elektron aus genau dem höchsten besetzten Orbit herauslöst.

An dieser These hegten Theoretiker aber schon länger Zweifel, denn viele Beobachtungen ließen sich damit nicht gut erklären. In Experimenten gab es zwar auch schon Hinweise darauf, dass sich Elektronen aus einem niedrigeren Orbit lösten, doch überlagerten sich darin so viele Effekte, dass der eindeutige Beweis noch fehlte. Prof. Marc Vrakking, Direktor am Berliner Max-Born-Institut (MBI), erklärt: „Diesen Beweis haben wir jetzt mit unserem Experiment geliefert.“

Die Gruppe von Forschern des kanadischen National Research Council (NRC), des AMOLF (Amsterdam) und des MBI hat bei ihrem Experiment ein Molekül in einem starken Laserfeld ionisiert. Die Wissenschaftler haben dann nicht nur die Energie des herausgelösten Elektrons gemessen, sondern parallel dazu auch das molekulare Ion. Wenn ein Elektron des höchsten besetzten Orbitals fehlt, ist das Ion stabil und verändert sich nicht so schnell. Fehlt jedoch ein Elektron eines niedrigeren Orbitals, muss vorher mehr Energie in das Molekül gesteckt worden sein.

Damit befindet sich das Molekül nun in einem angeregten und damit nicht stabilen Zustand, es fällt leichter auseinander. „Bei den Elektronen konnten wir neben denen, die aus dem höchsten Orbit stammten, auch Elektronen mit unterschiedlichen Energien messen – hier war es möglich, dass sie aus einem niedrigeren Orbit stammten“, berichtet Vrakking. „Den Beweis hatten wir dann, als wir gleichzeitig sehen konnten, dass das Ion zerfallen war.“

Die Ergebnisse ermöglichen ein neues Verständnis in der Attosekundenforschung, die auf der Ionisation in starken Laserfeldern basiert. Aber auch für chemische Prozesse eröffnen sich ganz neue Möglichkeiten. Wenn nicht nur Elektronen aus dem höchst besetzten Orbital, sondern auch aus niedrigeren Orbitalen ionisieren, dann hinterlässt man nach den Gesetzen der Quantenmechanik nämlich ein Molekül, in dem sich die Elektronen sehr schnell bewegen, bis hin zu einem Elektronenstrom. Das hat Einfluss darauf, wie das Molekül chemisch reagiert.

Eine Reaktion kann dadurch schneller ablaufen – von der Femtosekunden-Skala hin zur Attosekunden-Skala. Der Elektronenstrom innerhalb eines Moleküls kann aber auch dazu führen, dass es bestimmte chemische Reaktionen bevorzugt. Das könnte einen Paradigmenwechsel für die Fähigkeit von Molekülen zu chemischen Reaktionen bedeuten: Sie könnten dann durch die Bewegung von Elektronen verursacht werden und nicht mehr durch die der Atomkerne. Wissenschaftler könnten chemische Prozesse unmittelbar beeinflussen.

Die Messungen wurden in Kanada durchgeführt, die MBI-Physiker wollen sie nun in Berlin wiederholen und weiterführen.

Kontakt
Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie (MBI)
Prof. Dr. Marc Vrakking
Tel.: (030) 6392-1200
marc.vrakking@mbi-berlin.de

Gesine Wiemer | Forschungsverbund Berlin
Weitere Informationen:
http://www.fv-berlin.de
http://www.mbi-berlin.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Speicherdauer von Qubits für Quantencomputer weiter verbessert
09.12.2016 | Forschungszentrum Jülich

nachricht Elektronenautobahn im Kristall
09.12.2016 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie