Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie sich Elektronen bewegen

11.08.2010
Um ein Atom oder ein Molekül zu verstehen, müssen Physiker nicht nur deren inneren Aufbau kennen, sondern auch die Bewegung der Elektronen beschreiben können. Aufgrund der extrem hohen Geschwindigkeit war dies bislang nicht möglich. Nun hat ein europäisches Forscher-Team eine solche Mess-Methode entwickelt. Sie berichten darüber in den Physical Review Letters 105, 053001.

Auf der Ebene der Atome und Moleküle funktioniert unsere Alltagsvorstellung von der Welt nicht mehr. Ein Elektron stellen wir uns normalerweise als ein kleines Teilchen vor. „Das ist es auch“, sagt Prof. Marc Vrakking, Direktor am Max-Born Institut für Nichtlineare Optik und Kurzzeitspektroskopie (MBI) in Berlin.

„Um es verstehen zu können, müssen wir es aber manchmal aus der quantenmechanischen Sicht betrachten und uns als Wellenpaket vorstellen.“ Mit dieser abstrakten Vorstellung können die Physiker dann Phänomene erklären, die hinterher wieder mit unserer Alltagsvorstellung übereinstimmen.

Da man die Bewegung eines Elektrons nicht direkt beobachten kann, weil es zu schnell ist, hat das europäische Forscher-Team die Eigenschaften des Elektrons als Wellenpaket gemessen. Sobald sie alle Eigenschaften dieses Wellenpakets kannten, waren sie in der Lage, daraus die komplette Bewegung des Elektrons abzuleiten.

Für das Experiment haben die Forscher das Prinzip der Überlagerung von Wellen verwendet, die sogenannte Interferenz. Sie sind dabei genauso vorgegangen, wie bei Experimenten mit Lichtstrahlen, bei denen regelmäßiges Licht durch zwei Schlitze fällt und auf dem Schirm dahinter helle und dunkle Streifen zu sehen sind. Die Lichtstrahlen verhalten sich dabei wie Wellen – treffen zwei Wellenberge aufeinander, ergibt sich ein heller Streifen, ein Wellenberg und ein Wellental heben sich auf und erscheinen als dunkler Streifen.

Um ein Wellenpaket zu charakterisieren, als das die Physiker das Elektron betrachten, haben sie zunächst ein zweites Wellenpaket erzeugt, analog zu dem zweiten Schlitz für den Lichtstrahl: Mit einem Attosekunden-Laserpuls haben sie dafür ein Elektron aus dem untersuchten Atom herausgelöst. Ein Attosekunden-Laserpuls dauert ein Milliardstel einer Milliardstel Sekunde. Da die Forscher diesen Laserpuls kontrollieren, kennen sie nun die Eigenschaften des heraus gelösten Elektrons – und damit auch des Wellenpakets, als das sie es sich vorstellen. Überlagern sie nun dieses erzeugte Wellenpaket mit dem unbekannten Wellenpaket, können sie aus dem Interferenzmuster auf die unbekannten Eigenschaften schließen.

Die Methode erklärt Matthias Kling vom Labor für Attosekundenphysik am Max-Planck-Institut für Quantenoptik: „Für ein aussagekräftiges Interferenzmuster mussten wir das unbekannte Wellenpaket zunächst auf das gleiche Energieniveau wie das von uns zuvor erzeugte bekannte Wellenpaket anheben, welches durch den Attosekunden-Laserpuls viel mehr Energie hat als das unbekannte Wellenpaket in seinem ursprünglichen Zustand. Um diese Interferenz herzustellen, haben wir einen Infrarot-Laserpuls verwendet.“ Bei sehr großen Energieunterschieden ergibt sich kein echtes Interferenzmuster – das wäre so, als könnte man bei den Lichtstrahlen noch erkennen, durch welchen Schlitz das Licht gefallen ist. Durch die Überlagerung der beiden gleichwertigen Wellenpakete konnten die Forscher das bekannte Muster herausrechnen und erhielten so das unbekannte Muster.

Um ein Wellenpaket zu charakterisieren, müssen die Physiker dessen verschiedene Zustände kennen und wie groß die Anteile dieser Zustände am Wellenpaket sind. „Wir nennen das die Bevölkerung der Zustände“, sagt Vrakking. Außerdem müssen die Phasen der Wellen bekannt sein, also die zeitliche Verschiebung gegeneinander. Wenn sie diese Faktoren kennen, kehren die Wissenschaftler wieder in unsere ganz normale Vorstellungswelt zurück und beschreiben die komplette Bewegung der Elektronen, die man sich dann wieder als Teilchen denken darf.

Originalveröffentlichung:
Attosecond Electron Spectroscopy Using a Novel Interferometric Pump-Probe Technique J. Mauritsson, T. Remetter, M. Swoboda, K. Klunder, A. L’Huillier, K. J. Schafer, O. Ghafur, F. Kelkensberg, W. Siu, P. Johnsson, M. J. J. Vrakking, I. Znakovskaya, T. Uphues, S. Zherebtsov, M. F. Kling, F. Le´pine, E. Benedetti, F. Ferrari, G. Sansone, and M. Nisoli. Physical Review Letters 105, 053001 (2010) 30 July 2010

Kontakt:

Prof. Dr. Marc Vrakking
Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie
Tel.: +49 30 6392-1200
Fax: +49 30 6392-1209
E-Mail: vrakking@mbi-berlin.de
http://www.mbi-berlin.de
Prof. Dr. Matthias Kling
Max-Planck-Institut für Quantenoptik, Garching
Max Planck Forschungsgruppe „Attosecond Imaging“
Tel.: +49 89 32905-234 Fax: +49 89 32905-649
E-Mail: matthias.kling@mpq.mpg.de
http://www.attosecondimaging.de

Christine Vollgraf | idw
Weitere Informationen:
http://www.attosecondimaging.de
http://www.mbi-berlin.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Kleinste Teilchen aus fernen Galaxien!
22.09.2017 | Bergische Universität Wuppertal

nachricht Tanzende Elektronen verlieren das Rennen
22.09.2017 | Universität Bielefeld

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie