Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Elektronen am Tempolimit

26.08.2016

Elektronische Bauteile werden seit Jahren immer schneller und machen damit leistungsfähige Computer und andere Technologien möglich. Wie schnell sich Elektronen mit elektrischen Feldern letztendlich kontrollieren lassen, haben jetzt Forscher an der ETH Zürich untersucht. Ihre Erkenntnisse sind wichtig für die Petahertz-Elektronik der Zukunft.

Geschwindigkeit mag keine Hexerei sein, doch sie ist die Grundlage für Technologien, die nicht selten wie Magie anmuten. Moderne Computer etwa sind so leistungsfähig, weil in ihnen winzige Schaltelemente elektrische Ströme in Bruchteilen einer Milliardstel Sekunde steuern. Die unglaublichen Datenflüsse des Internet wiederum sind nur möglich, weil äusserst schnelle elektro-optische Modulatoren Informationen in Form sehr kurzer Lichtpulse durch Glasfaserkabel schicken.


Ein kurzer Laserpuls wandert durch einen Diamanten (schwarze Kugeln) und regt dort Elektronen an. Die Stärke der Anregung wird mittels eines Attosekunden-Ultraviolettpulses (violett) gemessen.

Matteo Lucchini, ETH Zürich

Bereits heute arbeiten elektronische Schaltkreise routinemässig mit Frequenzen von mehreren Gigahertz (eine Milliarde Schwingungen pro Sekunde) bis hin zu Terahertz (eine Billion Schwingungen). Die nächste Generation der Elektronik wird daher über kurz oder lang in den tausendmal schnelleren Petahertz-Bereich vorstossen müssen.

Ob und wie sich Elektronen allerdings derart schnell kontrollieren lassen, ist bislang noch weitgehend unbekannt. Ein Team um ETH-Professorin Ursula Keller hat nun in einem grundlegenden Experiment untersucht, wie Elektronen auf Petahertz-Felder reagieren.

In ihrem Experiment setzten Keller und ihre Mitarbeiter ein winziges, nur 50 Nanometer dickes Stück Diamant einem wenige Femtosekunden (d.h., den Millionstel Teil einer Milliardstel Sekunde) dauernden Laserpuls im Infrarotbereich aus.

Das elektrische Feld dieses Laserlichts, das eine Frequenz von etwa einem halben Petahertz aufweist, schwang in dieser kurzen Zeit fünfmal hin und her und regte so die Elektronen an. Grundsätzlich lässt sich die Wirkung elektrischer Felder auf Elektronen in durchsichtigen Materialien indirekt messen, indem man Licht durch das Material schickt und beobachtet, wie stark es von diesem absorbiert wird.

Während solche Messungen für konstante elektrische Felder einfach sind, stellen die extrem rasch schwingenden Felder eines Laserstrahls die Forscher vor eine schwierige Aufgabe. Im Prinzip sollte das Licht, mit dem die Absorption gemessen wird, nur jeweils für einen Bruchteil der Schwingungsperiode des elektrischen Feldes angeschaltet werden.

Dies aber bedeutet, dass ein solcher Mess-Puls weniger als eine Femtosekunde dauern darf. Zudem muss genau bekannt sein, in welcher Schwingungsphase sich das elektrische Feld des Laserpulses befindet, wenn der Mess-Puls eingeschaltet wird.

Grundstein aus den Neunziger Jahren

Den Grundstein für die Lösung dieser Probleme legte Kellers Team bereits Ende der Neunziger Jahre. «Damals zeigten wir erstmals, wie sich die Schwingungsphase eines Femtosekunden-Laserpulses präzise stabilisieren lässt», erklärt Keller, «was wiederum die Voraussetzung für die Erzeugung von Attosekunden-Laserpulsen ist». Diese Technik wurde seitdem verfeinert und erlaubt es den Forschern heute, Lichtpulse im extremen Ultraviolettbereich mit Wellenlängen von circa 30 Nanometern herzustellen, die nur einen Bruchteil einer Femtosekunde andauern und zudem perfekt mit der Schwingungsphase eines Infrarotpulses synchronisiert sind.

In ihren neuesten Experimenten benutzten die ETH-Forscher ein solches Laserpuls-Gespann, um mit dem elektrischen Feld des Infrarotpulses die Elektronen im Diamanten anzuregen und gleichzeitig die daraus resultierenden Absorptionsänderungen mit dem Attosekunden-Ultraviolettpuls zu messen. Tatsächlich sahen sie, dass sich diese im Rhythmus des schwingenden elektrischen Feldes des Infrarot-Laserpulses auf charakteristische Weise änderte.

Um allerdings im Detail zu verstehen, was dabei innerhalb des Diamanten vor sich ging, war noch einige Detektivarbeit nötig. Zunächst simulierten Forscher um Katsuhiro Yabana an der Tsukuba University in Japan in Zusammenarbeit mit den ETH-Physikern die Reaktion der Diamant-Elektronen auf den Infrarotpuls mithilfe eines Supercomputers und fanden dasselbe Absorptionsverhalten, das in Zürich gemessen wurde.

Diese Simulationen enthielten das komplexe Zusammenspiel der Elektronen im Kristallgitter des Diamanten, das sich in einer Vielzahl so genannter Energiebänder niederschlägt, in denen sich die Elektronen befinden können. «Der Vorteil der Simulationen gegenüber dem Experiment ist aber, dass man verschiedene dieser Effekte, die im realen Diamanten auftreten, ein- und ausschalten kann», sagt Matteo Lucchini, Postdoc in Kellers Arbeitsgruppe, «sodass wir schliesslich das charakteristische Absorptionsverhalten des Diamanten auf nur zwei Energiebänder zurückführen konnten».

Tempolimit im Petahertz-Bereich

Diese Erkenntnis war letztendlich entscheidend für die Interpretation der Messdaten. Aus ihr konnten die Forscher folgern, dass der dynamische Franz-Keldysh Effekt für die Absorption im Diamanten unter Einfluss des Infrarot-Laserpulses verantwortlich war. Während der Franz-Keldysh Effekt für statische elektrische Felder seit Jahren bekannt und gut verstanden ist, war sein dynamisches Gegenstück für extrem schnell schwingende Felder bisher noch nie beobachtet worden. «Der Umstand, dass wir diesen Effekt auch bei Petahertz-Anregungsfrequenzen immer noch sehen können, bestätigte uns, dass sich die Elektronen tatsächlich am Tempolimit des Petahertz-Laserfeldes beeinflussen lassen», erklärt Lukas Gallmann, Senior Scientist in Kellers Labor.

Die dynamische Wechselwirkung ist auch von grundlegendem Interesse, da sie in einem Bereich auftritt, der weder klar von quantenmechanischer noch klar von klassischer Licht-Materie-Wechselwirkung dominiert wird. Dies bedeutet, dass sowohl physikalische Effekte eine Rolle spielen, bei denen Licht in Form von Energiequanten (Photonen) ins Spiel kommt, als auch solche, in denen es ein klassisches elektromagnetisches Feld darstellt. Die nun publizierte Arbeit hat gezeigt, dass die Reaktion des Materials auf das optische Feld durch die Elektronenbewegung in einem einzelnen Energieband statt durch Übergänge zwischen verschiedenen Bändern dominiert wird. In ähnlichen Experimenten war bislang unklar, was genau vor sich geht, doch das ETH-Experiment hat jetzt in dieser Frage Klarheit geschaffen.

Von hier bis zur Petahertz-Elektronik ist es zwar noch ein weiter Weg, und andere physikalische Effekte könnten zudem leistungsbeschränkend wirken. Gallmann weist aber darauf hin, dass die neuen Ergebnisse in mehrfacher Hinsicht relevant sind, da sie zeigen, dass man bei solche hohen Frequenzen noch immer Elektronen mit elektrischen Feldern steuern und schalten kann. Lucchini fügt hinzu: «Diamant ist ein wichtiges Material, das in einer Vielzahl von Technologien von der Optomechanik bis hin zu Biosensoren Anwendung findet. Ein genaues Verständnis der Wechselwirkung mit Lichtfeldern, wie wir es jetzt erreicht haben, ist daher fundamental».

Literaturhinweis

Lucchini M, Sato SA, Ludwig A, Herrmann J, Volkov M, Kasmi L, Shinohara Y, Yabana K, Gallmann L, Keller U. Attosecond dynamical Franz-Keldysh effect in polycrystalline diamond. Science 26 Aug 2016: Vol. 353, Issue 6302, pp. 916-919, DOI: 10.1126/science.aag1268

Weitere Informationen:

https://www.ethz.ch/de/news-und-veranstaltungen/eth-news/news/2016/08/elektronen...

Peter Rüegg | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Weitere Berichte zu: Absorption Bruchteil Diamant ETH Elektronen Energiebänder Femtosekunde Schwingungen Tempolimit

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Reisetauglicher Laser
22.01.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht Magnetische Kontrolle per Handzeichen: Team entwickelt elektronische „Haut“ für virtuelle Realität
22.01.2018 | Helmholtz-Zentrum Dresden-Rossendorf

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vollmond-Dreierlei am 31. Januar 2018

Am 31. Januar 2018 fallen zum ersten Mal seit dem 30. Dezember 1982 "Supermond" (ein Vollmond in Erdnähe), "Blutmond" (eine totale Mondfinsternis) und "Blue Moon" (ein zweiter Vollmond im Kalendermonat) zusammen - Beobachter im deutschen Sprachraum verpassen allerdings die sichtbaren Phasen der Mondfinsternis.

Nach den letzten drei Vollmonden am 4. November 2017, 3. Dezember 2017 und 2. Januar 2018 ist auch der bevorstehende Vollmond am 31. Januar 2018 ein...

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

Veranstaltungen

15. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

22.01.2018 | Veranstaltungen

Transferkonferenz Digitalisierung und Innovation

22.01.2018 | Veranstaltungen

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungen

VideoLinks Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

15. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

22.01.2018 | Veranstaltungsnachrichten

Forschungsteam schafft neue Möglichkeiten für Medizin und Materialwissenschaft

22.01.2018 | Biowissenschaften Chemie

Ein Haus mit zwei Gesichtern

22.01.2018 | Architektur Bauwesen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics