Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Elektronen am Tempolimit

26.08.2016

Elektronische Bauteile werden seit Jahren immer schneller und machen damit leistungsfähige Computer und andere Technologien möglich. Wie schnell sich Elektronen mit elektrischen Feldern letztendlich kontrollieren lassen, haben jetzt Forscher an der ETH Zürich untersucht. Ihre Erkenntnisse sind wichtig für die Petahertz-Elektronik der Zukunft.

Geschwindigkeit mag keine Hexerei sein, doch sie ist die Grundlage für Technologien, die nicht selten wie Magie anmuten. Moderne Computer etwa sind so leistungsfähig, weil in ihnen winzige Schaltelemente elektrische Ströme in Bruchteilen einer Milliardstel Sekunde steuern. Die unglaublichen Datenflüsse des Internet wiederum sind nur möglich, weil äusserst schnelle elektro-optische Modulatoren Informationen in Form sehr kurzer Lichtpulse durch Glasfaserkabel schicken.


Ein kurzer Laserpuls wandert durch einen Diamanten (schwarze Kugeln) und regt dort Elektronen an. Die Stärke der Anregung wird mittels eines Attosekunden-Ultraviolettpulses (violett) gemessen.

Matteo Lucchini, ETH Zürich

Bereits heute arbeiten elektronische Schaltkreise routinemässig mit Frequenzen von mehreren Gigahertz (eine Milliarde Schwingungen pro Sekunde) bis hin zu Terahertz (eine Billion Schwingungen). Die nächste Generation der Elektronik wird daher über kurz oder lang in den tausendmal schnelleren Petahertz-Bereich vorstossen müssen.

Ob und wie sich Elektronen allerdings derart schnell kontrollieren lassen, ist bislang noch weitgehend unbekannt. Ein Team um ETH-Professorin Ursula Keller hat nun in einem grundlegenden Experiment untersucht, wie Elektronen auf Petahertz-Felder reagieren.

In ihrem Experiment setzten Keller und ihre Mitarbeiter ein winziges, nur 50 Nanometer dickes Stück Diamant einem wenige Femtosekunden (d.h., den Millionstel Teil einer Milliardstel Sekunde) dauernden Laserpuls im Infrarotbereich aus.

Das elektrische Feld dieses Laserlichts, das eine Frequenz von etwa einem halben Petahertz aufweist, schwang in dieser kurzen Zeit fünfmal hin und her und regte so die Elektronen an. Grundsätzlich lässt sich die Wirkung elektrischer Felder auf Elektronen in durchsichtigen Materialien indirekt messen, indem man Licht durch das Material schickt und beobachtet, wie stark es von diesem absorbiert wird.

Während solche Messungen für konstante elektrische Felder einfach sind, stellen die extrem rasch schwingenden Felder eines Laserstrahls die Forscher vor eine schwierige Aufgabe. Im Prinzip sollte das Licht, mit dem die Absorption gemessen wird, nur jeweils für einen Bruchteil der Schwingungsperiode des elektrischen Feldes angeschaltet werden.

Dies aber bedeutet, dass ein solcher Mess-Puls weniger als eine Femtosekunde dauern darf. Zudem muss genau bekannt sein, in welcher Schwingungsphase sich das elektrische Feld des Laserpulses befindet, wenn der Mess-Puls eingeschaltet wird.

Grundstein aus den Neunziger Jahren

Den Grundstein für die Lösung dieser Probleme legte Kellers Team bereits Ende der Neunziger Jahre. «Damals zeigten wir erstmals, wie sich die Schwingungsphase eines Femtosekunden-Laserpulses präzise stabilisieren lässt», erklärt Keller, «was wiederum die Voraussetzung für die Erzeugung von Attosekunden-Laserpulsen ist». Diese Technik wurde seitdem verfeinert und erlaubt es den Forschern heute, Lichtpulse im extremen Ultraviolettbereich mit Wellenlängen von circa 30 Nanometern herzustellen, die nur einen Bruchteil einer Femtosekunde andauern und zudem perfekt mit der Schwingungsphase eines Infrarotpulses synchronisiert sind.

In ihren neuesten Experimenten benutzten die ETH-Forscher ein solches Laserpuls-Gespann, um mit dem elektrischen Feld des Infrarotpulses die Elektronen im Diamanten anzuregen und gleichzeitig die daraus resultierenden Absorptionsänderungen mit dem Attosekunden-Ultraviolettpuls zu messen. Tatsächlich sahen sie, dass sich diese im Rhythmus des schwingenden elektrischen Feldes des Infrarot-Laserpulses auf charakteristische Weise änderte.

Um allerdings im Detail zu verstehen, was dabei innerhalb des Diamanten vor sich ging, war noch einige Detektivarbeit nötig. Zunächst simulierten Forscher um Katsuhiro Yabana an der Tsukuba University in Japan in Zusammenarbeit mit den ETH-Physikern die Reaktion der Diamant-Elektronen auf den Infrarotpuls mithilfe eines Supercomputers und fanden dasselbe Absorptionsverhalten, das in Zürich gemessen wurde.

Diese Simulationen enthielten das komplexe Zusammenspiel der Elektronen im Kristallgitter des Diamanten, das sich in einer Vielzahl so genannter Energiebänder niederschlägt, in denen sich die Elektronen befinden können. «Der Vorteil der Simulationen gegenüber dem Experiment ist aber, dass man verschiedene dieser Effekte, die im realen Diamanten auftreten, ein- und ausschalten kann», sagt Matteo Lucchini, Postdoc in Kellers Arbeitsgruppe, «sodass wir schliesslich das charakteristische Absorptionsverhalten des Diamanten auf nur zwei Energiebänder zurückführen konnten».

Tempolimit im Petahertz-Bereich

Diese Erkenntnis war letztendlich entscheidend für die Interpretation der Messdaten. Aus ihr konnten die Forscher folgern, dass der dynamische Franz-Keldysh Effekt für die Absorption im Diamanten unter Einfluss des Infrarot-Laserpulses verantwortlich war. Während der Franz-Keldysh Effekt für statische elektrische Felder seit Jahren bekannt und gut verstanden ist, war sein dynamisches Gegenstück für extrem schnell schwingende Felder bisher noch nie beobachtet worden. «Der Umstand, dass wir diesen Effekt auch bei Petahertz-Anregungsfrequenzen immer noch sehen können, bestätigte uns, dass sich die Elektronen tatsächlich am Tempolimit des Petahertz-Laserfeldes beeinflussen lassen», erklärt Lukas Gallmann, Senior Scientist in Kellers Labor.

Die dynamische Wechselwirkung ist auch von grundlegendem Interesse, da sie in einem Bereich auftritt, der weder klar von quantenmechanischer noch klar von klassischer Licht-Materie-Wechselwirkung dominiert wird. Dies bedeutet, dass sowohl physikalische Effekte eine Rolle spielen, bei denen Licht in Form von Energiequanten (Photonen) ins Spiel kommt, als auch solche, in denen es ein klassisches elektromagnetisches Feld darstellt. Die nun publizierte Arbeit hat gezeigt, dass die Reaktion des Materials auf das optische Feld durch die Elektronenbewegung in einem einzelnen Energieband statt durch Übergänge zwischen verschiedenen Bändern dominiert wird. In ähnlichen Experimenten war bislang unklar, was genau vor sich geht, doch das ETH-Experiment hat jetzt in dieser Frage Klarheit geschaffen.

Von hier bis zur Petahertz-Elektronik ist es zwar noch ein weiter Weg, und andere physikalische Effekte könnten zudem leistungsbeschränkend wirken. Gallmann weist aber darauf hin, dass die neuen Ergebnisse in mehrfacher Hinsicht relevant sind, da sie zeigen, dass man bei solche hohen Frequenzen noch immer Elektronen mit elektrischen Feldern steuern und schalten kann. Lucchini fügt hinzu: «Diamant ist ein wichtiges Material, das in einer Vielzahl von Technologien von der Optomechanik bis hin zu Biosensoren Anwendung findet. Ein genaues Verständnis der Wechselwirkung mit Lichtfeldern, wie wir es jetzt erreicht haben, ist daher fundamental».

Literaturhinweis

Lucchini M, Sato SA, Ludwig A, Herrmann J, Volkov M, Kasmi L, Shinohara Y, Yabana K, Gallmann L, Keller U. Attosecond dynamical Franz-Keldysh effect in polycrystalline diamond. Science 26 Aug 2016: Vol. 353, Issue 6302, pp. 916-919, DOI: 10.1126/science.aag1268

Weitere Informationen:

https://www.ethz.ch/de/news-und-veranstaltungen/eth-news/news/2016/08/elektronen...

Peter Rüegg | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Weitere Berichte zu: Absorption Bruchteil Diamant ETH Elektronen Energiebänder Femtosekunde Schwingungen Tempolimit

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Erforschung von Elementarteilchen in Materialien
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Vermeintlich junger Stern entpuppt sich als galaktischer Greis
16.01.2017 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Erforschung von Elementarteilchen in Materialien

Laseranregung von Semimetallen ermöglicht die Erzeugung neuartiger Quasiteilchen in Festkörpersystemen sowie ultraschnelle Schaltung zwischen verschiedenen Zuständen.

Die Untersuchung der Eigenschaften fundamentaler Teilchen in Festkörpersystemen ist ein vielversprechender Ansatz für die Quantenfeldtheorie. Quasiteilchen...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Mit solaren Gebäudehüllen Architektur gestalten

Solarthermie ist in der breiten Öffentlichkeit derzeit durch dunkelblaue, rechteckige Kollektoren auf Hausdächern besetzt. Für ästhetisch hochwertige Architektur werden Technologien benötigt, die dem Architekten mehr Gestaltungsspielraum für Niedrigst- und Plusenergiegebäude geben. Im Projekt »ArKol« entwickeln Forscher des Fraunhofer ISE gemeinsam mit Partnern aktuell zwei Fassadenkollektoren für solare Wärmeerzeugung, die ein hohes Maß an Designflexibilität erlauben: einen Streifenkollektor für opake sowie eine solarthermische Jalousie für transparente Fassadenanteile. Der aktuelle Stand der beiden Entwicklungen wird auf der BAU 2017 vorgestellt.

Im Projekt »ArKol – Entwicklung von architektonisch hoch integrierten Fassadekollektoren mit Heat Pipes« entwickelt das Fraunhofer ISE gemeinsam mit Partnern...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungen

Über intelligente IT-Systeme und große Datenberge

17.01.2017 | Veranstaltungen

Aquakulturen und Fangquoten – was hilft gegen Überfischung?

16.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungsnachrichten

Intelligente Haustechnik hört auf „LISTEN“

17.01.2017 | Architektur Bauwesen

Satellitengestützte Lasermesstechnik gegen den Klimawandel

17.01.2017 | Maschinenbau