Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Elektronen am Tempolimit

26.08.2016

Elektronische Bauteile werden seit Jahren immer schneller und machen damit leistungsfähige Computer und andere Technologien möglich. Wie schnell sich Elektronen mit elektrischen Feldern letztendlich kontrollieren lassen, haben jetzt Forscher an der ETH Zürich untersucht. Ihre Erkenntnisse sind wichtig für die Petahertz-Elektronik der Zukunft.

Geschwindigkeit mag keine Hexerei sein, doch sie ist die Grundlage für Technologien, die nicht selten wie Magie anmuten. Moderne Computer etwa sind so leistungsfähig, weil in ihnen winzige Schaltelemente elektrische Ströme in Bruchteilen einer Milliardstel Sekunde steuern. Die unglaublichen Datenflüsse des Internet wiederum sind nur möglich, weil äusserst schnelle elektro-optische Modulatoren Informationen in Form sehr kurzer Lichtpulse durch Glasfaserkabel schicken.


Ein kurzer Laserpuls wandert durch einen Diamanten (schwarze Kugeln) und regt dort Elektronen an. Die Stärke der Anregung wird mittels eines Attosekunden-Ultraviolettpulses (violett) gemessen.

Matteo Lucchini, ETH Zürich

Bereits heute arbeiten elektronische Schaltkreise routinemässig mit Frequenzen von mehreren Gigahertz (eine Milliarde Schwingungen pro Sekunde) bis hin zu Terahertz (eine Billion Schwingungen). Die nächste Generation der Elektronik wird daher über kurz oder lang in den tausendmal schnelleren Petahertz-Bereich vorstossen müssen.

Ob und wie sich Elektronen allerdings derart schnell kontrollieren lassen, ist bislang noch weitgehend unbekannt. Ein Team um ETH-Professorin Ursula Keller hat nun in einem grundlegenden Experiment untersucht, wie Elektronen auf Petahertz-Felder reagieren.

In ihrem Experiment setzten Keller und ihre Mitarbeiter ein winziges, nur 50 Nanometer dickes Stück Diamant einem wenige Femtosekunden (d.h., den Millionstel Teil einer Milliardstel Sekunde) dauernden Laserpuls im Infrarotbereich aus.

Das elektrische Feld dieses Laserlichts, das eine Frequenz von etwa einem halben Petahertz aufweist, schwang in dieser kurzen Zeit fünfmal hin und her und regte so die Elektronen an. Grundsätzlich lässt sich die Wirkung elektrischer Felder auf Elektronen in durchsichtigen Materialien indirekt messen, indem man Licht durch das Material schickt und beobachtet, wie stark es von diesem absorbiert wird.

Während solche Messungen für konstante elektrische Felder einfach sind, stellen die extrem rasch schwingenden Felder eines Laserstrahls die Forscher vor eine schwierige Aufgabe. Im Prinzip sollte das Licht, mit dem die Absorption gemessen wird, nur jeweils für einen Bruchteil der Schwingungsperiode des elektrischen Feldes angeschaltet werden.

Dies aber bedeutet, dass ein solcher Mess-Puls weniger als eine Femtosekunde dauern darf. Zudem muss genau bekannt sein, in welcher Schwingungsphase sich das elektrische Feld des Laserpulses befindet, wenn der Mess-Puls eingeschaltet wird.

Grundstein aus den Neunziger Jahren

Den Grundstein für die Lösung dieser Probleme legte Kellers Team bereits Ende der Neunziger Jahre. «Damals zeigten wir erstmals, wie sich die Schwingungsphase eines Femtosekunden-Laserpulses präzise stabilisieren lässt», erklärt Keller, «was wiederum die Voraussetzung für die Erzeugung von Attosekunden-Laserpulsen ist». Diese Technik wurde seitdem verfeinert und erlaubt es den Forschern heute, Lichtpulse im extremen Ultraviolettbereich mit Wellenlängen von circa 30 Nanometern herzustellen, die nur einen Bruchteil einer Femtosekunde andauern und zudem perfekt mit der Schwingungsphase eines Infrarotpulses synchronisiert sind.

In ihren neuesten Experimenten benutzten die ETH-Forscher ein solches Laserpuls-Gespann, um mit dem elektrischen Feld des Infrarotpulses die Elektronen im Diamanten anzuregen und gleichzeitig die daraus resultierenden Absorptionsänderungen mit dem Attosekunden-Ultraviolettpuls zu messen. Tatsächlich sahen sie, dass sich diese im Rhythmus des schwingenden elektrischen Feldes des Infrarot-Laserpulses auf charakteristische Weise änderte.

Um allerdings im Detail zu verstehen, was dabei innerhalb des Diamanten vor sich ging, war noch einige Detektivarbeit nötig. Zunächst simulierten Forscher um Katsuhiro Yabana an der Tsukuba University in Japan in Zusammenarbeit mit den ETH-Physikern die Reaktion der Diamant-Elektronen auf den Infrarotpuls mithilfe eines Supercomputers und fanden dasselbe Absorptionsverhalten, das in Zürich gemessen wurde.

Diese Simulationen enthielten das komplexe Zusammenspiel der Elektronen im Kristallgitter des Diamanten, das sich in einer Vielzahl so genannter Energiebänder niederschlägt, in denen sich die Elektronen befinden können. «Der Vorteil der Simulationen gegenüber dem Experiment ist aber, dass man verschiedene dieser Effekte, die im realen Diamanten auftreten, ein- und ausschalten kann», sagt Matteo Lucchini, Postdoc in Kellers Arbeitsgruppe, «sodass wir schliesslich das charakteristische Absorptionsverhalten des Diamanten auf nur zwei Energiebänder zurückführen konnten».

Tempolimit im Petahertz-Bereich

Diese Erkenntnis war letztendlich entscheidend für die Interpretation der Messdaten. Aus ihr konnten die Forscher folgern, dass der dynamische Franz-Keldysh Effekt für die Absorption im Diamanten unter Einfluss des Infrarot-Laserpulses verantwortlich war. Während der Franz-Keldysh Effekt für statische elektrische Felder seit Jahren bekannt und gut verstanden ist, war sein dynamisches Gegenstück für extrem schnell schwingende Felder bisher noch nie beobachtet worden. «Der Umstand, dass wir diesen Effekt auch bei Petahertz-Anregungsfrequenzen immer noch sehen können, bestätigte uns, dass sich die Elektronen tatsächlich am Tempolimit des Petahertz-Laserfeldes beeinflussen lassen», erklärt Lukas Gallmann, Senior Scientist in Kellers Labor.

Die dynamische Wechselwirkung ist auch von grundlegendem Interesse, da sie in einem Bereich auftritt, der weder klar von quantenmechanischer noch klar von klassischer Licht-Materie-Wechselwirkung dominiert wird. Dies bedeutet, dass sowohl physikalische Effekte eine Rolle spielen, bei denen Licht in Form von Energiequanten (Photonen) ins Spiel kommt, als auch solche, in denen es ein klassisches elektromagnetisches Feld darstellt. Die nun publizierte Arbeit hat gezeigt, dass die Reaktion des Materials auf das optische Feld durch die Elektronenbewegung in einem einzelnen Energieband statt durch Übergänge zwischen verschiedenen Bändern dominiert wird. In ähnlichen Experimenten war bislang unklar, was genau vor sich geht, doch das ETH-Experiment hat jetzt in dieser Frage Klarheit geschaffen.

Von hier bis zur Petahertz-Elektronik ist es zwar noch ein weiter Weg, und andere physikalische Effekte könnten zudem leistungsbeschränkend wirken. Gallmann weist aber darauf hin, dass die neuen Ergebnisse in mehrfacher Hinsicht relevant sind, da sie zeigen, dass man bei solche hohen Frequenzen noch immer Elektronen mit elektrischen Feldern steuern und schalten kann. Lucchini fügt hinzu: «Diamant ist ein wichtiges Material, das in einer Vielzahl von Technologien von der Optomechanik bis hin zu Biosensoren Anwendung findet. Ein genaues Verständnis der Wechselwirkung mit Lichtfeldern, wie wir es jetzt erreicht haben, ist daher fundamental».

Literaturhinweis

Lucchini M, Sato SA, Ludwig A, Herrmann J, Volkov M, Kasmi L, Shinohara Y, Yabana K, Gallmann L, Keller U. Attosecond dynamical Franz-Keldysh effect in polycrystalline diamond. Science 26 Aug 2016: Vol. 353, Issue 6302, pp. 916-919, DOI: 10.1126/science.aag1268

Weitere Informationen:

https://www.ethz.ch/de/news-und-veranstaltungen/eth-news/news/2016/08/elektronen...

Peter Rüegg | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Weitere Berichte zu: Absorption Bruchteil Diamant ETH Elektronen Energiebänder Femtosekunde Schwingungen Tempolimit

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Die Sonne: Motor des Erdklimas
23.08.2017 | Generalverwaltung der Max-Planck-Gesellschaft, München

nachricht Entfesselte Magnetkraft
23.08.2017 | Generalverwaltung der Max-Planck-Gesellschaft, München

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Platz 2 für Helikopter-Designstudie aus Stade - Carbontechnologie-Studenten der PFH erfolgreich

Bereits lange vor dem Studienabschluss haben vier Studenten des PFH Hansecampus Stade ihr ingenieurwissenschaftliches Können eindrucksvoll unter Beweis gestellt: Malte Blask, Hagen Hagens, Nick Neubert und Rouven Weg haben bei einem internationalen Wettbewerb der American Helicopter Society (AHS International) den zweiten Platz belegt. Ihre Aufgabe war es, eine Designstudie für ein helikopterähnliches Fluggerät zu entwickeln, das 24 Stunden an einem Punkt in der Luft fliegen kann.

Die vier Kommilitonen sind im Studiengang Verbundwerkstoffe/Composites am Hansecampus Stade der PFH Private Hochschule Göttingen eingeschrieben. Seit elf...

Im Focus: Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall

In einem Artikel der aktuellen Ausgabe des Forschungsmagazins „Nature“ berichten Wissenschaftler vom Max-Planck-Institut für Chemische Physik fester Stoffe in Dresden von der Entdeckung eines seltenen Materiezustandes, bei dem sich die Elektronen in einem Kristall gemeinsam in einer Richtung bewegen. Diese Entdeckung berührt eine der offenen Fragestellungen im Bereich der Festkörperphysik: Was passiert, wenn sich Elektronen gemeinsam im Kollektiv verhalten, in sogenannten „stark korrelierten Elektronensystemen“, und wie „einigen sich“ die Elektronen auf ein gemeinsames Verhalten?

In den meisten Metallen beeinflussen sich Elektronen gegenseitig nur wenig und leiten Wärme und elektrischen Strom weitgehend unabhängig voneinander durch das...

Im Focus: Wie ein Bakterium von Methanol leben kann

Bei einem Bakterium, das Methanol als Nährstoff nutzen kann, identifizierten ETH-Forscher alle dafür benötigten Gene. Die Erkenntnis hilft, diesen Rohstoff für die Biotechnologie besser nutzbar zu machen.

Viele Chemiker erforschen derzeit, wie man aus den kleinen Kohlenstoffverbindungen Methan und Methanol grössere Moleküle herstellt. Denn Methan kommt auf der...

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Zukunft des Leichtbaus: Mehr als nur Material einsparen

23.08.2017 | Veranstaltungen

Logistikmanagement-Konferenz 2017

23.08.2017 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Oktober 2017

23.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Spot auf die Maschinerie des Lebens

23.08.2017 | Biowissenschaften Chemie

Die Sonne: Motor des Erdklimas

23.08.2017 | Physik Astronomie

Entfesselte Magnetkraft

23.08.2017 | Physik Astronomie